Standardmodell Versicherungen

Technische Beschreibung für das SST-Standardmodell Marktrisiko

30. Januar 2019
Inhaltsverzeichnis

1 Einleitung .. 4

2 Theoretische Beschreibung des SST-Modells ... 4
 2.1 Ausgangslage... 4
 2.2 Einjahresrisiko-, Zielkapital (TC) und Marktrisiko... 5
 2.3 RBC unter Going-Concern und unter Run-Off-Annahmen .. 6
 2.4 Bewertungsfunktion, Risikotreiber und Stationaritätsannahme .. 7
 2.5 Zusammenfassung... 9

3 Bewertungsfunktionen und Delta-Ansatz im SST-Standardmodell für das Marktrisiko 10
 3.1 Grundsatz ... 10
 3.2 Exakte Bewertungsfunktionen.. 12
 3.2.1 Bewertungsfunktion für Aktiven mit direkt marktabhängigen Preisen 12
 3.2.2 Festverzinsliche Anlagen und Versicherungsverpflichtungen............................ 12
 3.2.3 Forwards ... 15
 3.3 Delta-Ansatz .. 16
 3.3.1 Marktrisiken .. 17
 3.3.2 Exkurs: Versicherungstechnische Risiken ... 18
 3.3.3 Sensitivitäten für die Marktrisiken ... 18
 3.4 Zusammenfassung.. 19

4 Zentrierung und erwartetes Ergebnis .. 20
 4.1 Zentrierung ... 20
 4.2 Erwartetes finanzielles Ergebnis .. 21

5 Marktrisikotreiber, Mappingregeln, Schätzmethode und Datengrundlage................................. 21
 5.1 Marktrisikotreiber ... 22
 5.2 Anwendung der Marktrisikotreiber bei exakten Bewertungsfunktionen 23
5.3 Zu berücksichtigende Positionen nach Marktrisikotreiber und Mappingregeln bei exakten Bewertungsfunktionen ... 26
5.4 Bedeutung der Marktrisikotreiber und Ermittlung der Sensitivitäten im Delta-Ansatz .. 29
5.5 Zu berücksichtigende Positionen und Mappingregeln im Delta-Ansatz .. 32
5.6 Schätzung der Volatilitäten und Korrelationsmatrix ... 34
 5.6.1 Methodik ... 34
 5.6.2 Wechsel der SST-Währung .. 37
5.7 Beschreibung der Datengrundlage .. 39

6 Hinweise zum SST-Template.xlsx .. 42
 6.1 Angaben im SST-Template.xlsx .. 42
 6.2 Anpassungen des SST-Template.xlsx bei zusätzlich zu berücksichtigenden Risikofaktoren ... 43
1 Einleitung

Das vorliegende Dokument definiert das SST-Standardmodell für das Marktrisiko im Sinne von Artikel 50b der Aufsichtsverordnung (AVO; SR 961.011) und richtet sich an SST-pflichtigen Versicherungsunternehmen, welche dieses SST-Standardmodell verwenden.

Neben der Beschreibung des SST-Standardmodells enthält dieses Dokument Angaben zur Benutzung der Excel-Datei SST-Template.xlsx.

Die Beschreibungen, insbesondere zur Abgrenzung zu Versicherungsverpflichtungen, gelten grundsätzlich für Leben- und Krankenversicherungen. Für abweichendes Vorgehen in anderen Sparten verweisen wir auf die die technischen Beschreibungen der SST-Standardmodelle Leben-, Kranken-, Schaden- und Rückversicherung (Spartendokumente).

Aus Übersichtlichkeitsgründen begrenzen wir uns grossmehrheitlich auf den Fall, dass der Schweizer Franken als SST-Währung gewählt ist und behandeln Währungswechsel im speziellen Abschnitt 5.6.2.

2 Theoretische Beschreibung des SST-Modells

2.1 Ausgangslage

Der Ausgangspunkt der theoretischen Beschreibung bildet die SST-Bilanz zum Stichtag und die Bestimmung des risikotragenden Kapitals (Risk Bearing Capital, RBC) nach Rz 17 FINMA-RS 17/03 "SST". In den nachfolgenden Ausführungen sind alle Werte risikofrei diskontiert.

Wir bezeichnen mit \(A_t \), bzw. \(L_t \) die Aktiven, bzw. das Fremdkapital\(^1\) zum Zeitpunkt \(t \).\(^2\) Das Fremdkapital unterteilen wir in Versicherungsverpflichtungen \(IL_t \) und übrige Verbindlichkeiten \(OL_t \). Mit \(V(A_t) \), \(\bar{V}(L_t) \), \(V(IL_t) \) und \(V(OL_t) \) bezeichnen wir den jeweiligen marktnahen Wert der Aktiva, des Fremdkapitals, der Versicherungsverpflichtungen und der übrigen Verbindlichkeiten zum Zeitpunkt \(t \).

Weiter gelten folgende Beziehungen:

\[- \bar{V}(L_t) = V(IL_t) + V(OL_t) \]

\[- V(IL_t) = BE_t + MV_t, \text{ wobei } BE_t \text{ für den Best Estimate der Versicherungsverpflichtungen und } MV_t \text{ den Mindestbetrag nach AVO Art. 41 Abs. 3 steht.} \]

\[- V(L_t) = BE_t + V(OL_t) \]

\(^1\) Es handelt sich dabei um die Stückzahl, Verträge, Objekte etc. und nicht um deren Wert, respektive Best Estimate, welcher erst durch die Anwendung einer Bewertungsmethodik ermittelt wird., was in den Abbildung 1 und Abbildung 2 durch die Höhe der Balken visualisiert wird.

\(^2\) Das Symbol \(t \) bezeichnet den Stichtag falls \(t = 0 \), oder alternativ einen zukünftigen Zeitpunkt, im SST i.d.R. \(t = 1 \).
Für das risikotragende Kapital RBC gilt vereinfachend (d.h. ohne Berücksichtigung der Abzüge und des ergänzenden Kapitals gemäß AVO Art. 48 und Art. 49)

\[RBC_t = V(A_t) - \bar{V}(L_t) + \text{MVM}_t. \]

Oder äquivalent unter Berücksichtigung der oben definierten Größen:

\[RBC_t = V(A_t) - BE_t - V(OL_t) = V(A_t) - V(L_t). \]

Mit der Bezeichnung $NAV_t = V(A_t) - \bar{V}(L_t)$ folgt

\[RBC_t = NAV_t + \text{MVM}_t, \]

wobei NAV_t der Nettoinventarwert (*net asset value*) darstellt. Graphisch lassen sich diese Größen folgendermassen darstellen:

Abbildung 1 Graphische Darstellung des RBC.

2.2 Einjahresrisiko-, Zielkapital (TC)³ und Marktrisiko

Im SST ist die Solvenzanforderung erfüllt, wenn das verfügbare Kapital (das risikotragende Kapital) mindestens so gross ist wie das geforderte Kapital (das Zielkapital).

Unter der vereinfachenden Annahme, dass der Mindestbetrag am Ende der Einjahresperiode zum Stichtag deterministisch ist, ist (in unserer diskontierten Notation) das Zielkapital gemäß Rz 60 des Rundschreibens FINMA-RS 17/03 "SST" gegeben durch

³ TC: Target Capital
\[TC = -ES_\alpha(\Delta RBC) + MV M_1, \]

wobei \(\Delta RBC = RBC_1 - RBC_0 \) und

\[ES_\alpha(X) = \frac{1}{\alpha} \int_0^\alpha q_u du, \quad q_u(X) = \inf\{x; P(X \leq x) \geq u\}. \]

Dabei steht \(MV M_1 \) für den Mindestbetrag zum Zeitpunkt \(t = 1 \).

Das Marktrisiko ist definiert als das Risiko einer Veränderung des \(RBC \), welche sich aufgrund von Änderungen von Marktrisikovariablen ergibt. Das Risiko wird dabei, wie im Falle des \(TC \), als das Negative des Expected Shortfalls dieser \(RBC \)-Veränderung quantifiziert. Marktrisikovariablen werden Marktrisikotreiber bzw. -faktoren genannt (vgl. Kapitel 2.4).

Im SST-Standardmodell erfolgt die Ermittlung des Marktrisikos zentriert. Die Effekte zu den erwarteten Renditen über risikofreier Verzinsung und zur Diskontierung im Modell werden dabei vereinfacht wie in Abschnitt 4.2 berücksichtigt. Aus diesem Grund verzichten wir in der Notation weiterhin auf die Bezeichnung von Diskonteffekten.

2.3 RBC unter Going-Concern und unter Run-Off-Annahmen

Der SST (Rz 4 FINMA-RS 17/3 "SST") unterscheidet zwischen \(RBC \) unter Going-Concern- und unter Run-Off-Annahmen. Unter Going-Concern-Annahmen (Fortführungsprinzip) wird angenommen, dass das Versicherungsunternehmen seine Aktivität gemäß seiner eigenen Geschäftsplanung fortführt. Unter Run-Off-Annahmen zeichnet ein Versicherungsunternehmen hingegen kein Neugeschäft mehr und wickelt lediglich seinen Bestand ab.

Folgendes Schema zeigt die allgemeine Vorgehensweise nach Rz 4 des FINMA-RS 17/3 "SST" für die Berechnung des Marktrisikos als Teil des Zielkapitals auf.
Abbildung 2 Vorgehensweise im SST-Standardmodell für das Marktrisiko

In \(t = 0 \) werden Aktiven und Fremdkapital gemäss Rz 34 des FINMA-RS 17/3 "SST" unter Going-Concern-Annahmen bewertet. Bis \(t = 1 \) folgt das Versicherungsunternehmen seiner eigenen Geschäftsplanung (Schritt 1). Dies führt zu neuen Bilanzwerten der Aktiven. Am Jahresende (zum Zeitpunkt \(t = 1 \)) wird für die Bewertung der Verbindlichkeiten unterstellt, dass die Bewertung zu \(t = 1 \) durch die Verwendung von Certainty-Equivalent-Cashflows, gegebenenfalls ergänzt mit Deltasensitivitäten, oft gut approximiert werden kann (Schritt 3). Siehe dazu auch die Approximation für den Zeitpunkt \(t \in \{0,1\} \), in Formel 1 in Abschnitt 3.1 und die Ausführungen zu den Deltasensitivitäten in Abschnitt 3.3.1.

Wir verwenden Obenindizes für die Bezeichnung, ob eine Größe unter Going-Concern-Annahmen (\(g \)) bzw. unter Run-Off-Annahmen (\(r \)) hergeleitet wird. Zur Vereinfachung der Notation verzichten wir auf diese Indizes, sofern die Ermittlungsart aus dem Kontext klar ist.

Für die Bestimmung des Marktrisikos als Teil des Zielkapitals ist damit \(RBC_t^r - RBC_0^g \) für die Differenz des risikotragenden Kapitals als massgebende Größe zu betrachten.

2.4 Bewertungsfunktion, Risikotreiber und Stationaritätsannahme

Die Entwicklung des risikotragenden Kapitals vom Zeitpunkt \(t = 0 \) zu \(t = 1 \) wird unter anderem von der Entwicklung der Finanzmärkte und der Versicherungsriskovariablen beeinflusst. Mindestens diese Komponenten sollen neben den hier nicht behandelten Kreditrisikoereignissen in der Bestimmung des risikotragenden Kapitals zum Zeitpunkt \(t = 1 \) berücksichtigt werden.
Wir führen in einem ersten Schritt die folgende Terminologie ein:

(2) Risikofaktor (RF): Größe, welche durch eine funktionale Transformation der RT gewonnen wird. Dies erfolgt im SST-Standardmodell entweder durch Logarithmieren und Verschieben (Shiften) von Risikotreibern (wie z.B. Aktienmarktindizes, Immobilienindizes, Devisenkurse, Volatilitäts-Indizes) oder durch die Verwendung der Identitätsfunktion ($f(x) = x$, d.h. keine Transformation) bei Zinsen und Spreads. Im Versicherungsrisiko gibt es keinen Unterschied zwischen Risikofaktoren und Risikotreibern.

(3) Inkremente (ΔRF) des Risikofaktors RF definiert durch die Differenz der Werte des Risikofaktors bei $t = 1$ und $t = 0$: $\Delta RF = RF_1 - RF_0$.

In den SST-Standardmodellen für das Markt-, Leben- und Krankenversicherungsrisiko nehmen wir an, dass der Vektor ΔRF zentriert normalverteilt ist. Für die abweichende Modellierung im Schadenversicherungsbereich verweisen wir auf die entsprechenden technischen Beschreibungen.

Wir unterstellen nun die Existenz von Bewertungsfunktionen4 für das risikotragende Kapital unter Run-Off-Annahmen zum Zeitpunkt $t \in \{0,1\}$ von der Form

$$RBC^t_\Gamma = f^\ast(A_t, RT_t, t) - f^\ast\ast(A_t, IL_t, RT_t, t) - f^\ast\ast\ast(OL_t, RT_t, t) \cdot$$

Zu beachten ist, dass die Bewertungsfunktion für die Versicherungsverpflichtungen $f^\ast\ast\ast(\cdot)$ auch von den Aktiven abhängen kann.

Wir führen nun die sogenannte Stationaritätsannahme ein: die Bewertung für das risikotragende Kapital zum Zeitpunkt $t = 1$ ergibt sich vereinfacht approximiert durch die Bewertungsfunktion angewendet auf das Portfolio der Aktiven und Verbindlichkeiten zum Zeitpunkt $t = 0$

$$RBC^t_\Gamma = f^\ast(A_1, RT_1, 1) - f^\ast\ast(A_1, IL_1, RT_1, 1) - f^\ast\ast\ast(OL_1, RT_1, 1)$$

$$\approx f^\ast(A_0, RT_1, 1) - f^\ast\ast(\tilde{A}_0, IL_0, RT_1, 1) - f^\ast\ast\ast(OL_0, RT_1, 1)$$

$$=: f^\ast\ast\ast(\Gamma, 1) \cdot$$

Aus den obigen Ausführungen folgt aber auch, dass $RBC^t_\Gamma = f^\ast\ast\ast(\Gamma, 0)$ gilt.

Graphisch lässt sich die beschriebene Vorgehensweise folgendermassen darstellen.

4 Abhängig vom Portfolio und von den Risikofaktoren genau zum Bewertungszeitpunkt t.
Abbildung 3 Approximation der Bewertungsfunktion zum Zeitpunkt bei \(t = 1 \) durch die zum Zeitpunkt \(t = 0 \)

Es handelt sich bei dieser Darstellung um ein Hilfskonstrukt zur Ermittlung der Approximation der Bewertungsfunktion der Versicherungsverpflichtungen im Zeitpunkt \(t = 1 \). Für die Bewertung in \(t = 1 \) nimmt man für die Versicherungsverpflichtungen an, dass das Versicherungsunternehmen zum Zeitpunkt \(t = 0 \) in den Run-Off geht, was wir in der Notation durch die Verwendung von \(\tilde{A}_0 \) statt \(A_0 \) zum Ausdruck bringen. Wir verwenden dann die daraus resultierende Bewertungsfunktion angewendet auf ausgelenkte Risikofaktoren für die Bewertung im Zeitpunkt \(t = 1 \). Diese Annahme wird als Stationaritätsannahme bezeichnet: Die Bewertung der Versicherungsverpflichtungen in \(t = 1 \) unter Run-Off-Annahmen wird approximiert durch die Bewertungsfunktion unter Run-Off bei \(t = 0 \) ausgewertet auf die ausgelenkten Risikofaktoren in \(t = 1 \).

Für die nachfolgenden technischen Ausführungen weisen wir nochmals darauf hin, dass der Run-Off-Index in \(f^* \) sich lediglich auf die Bewertungsfunktion der Verpflichtungen bezieht. Für die Bewertung der Aktiven werden die Aktiven vor Run-Off betrachtet.

2.5 Zusammenfassung

Zentrale Größe für die Bestimmung des Zielkapitals ist die Veränderung des risikotragenden Kapitals, definiert, gemäß Abschnitt 2.3, als \(RBC_t^1 - RBC_0^0 \). Wir erhalten für diese Größe unter Berücksichtigung der vorangehenden Ausführungen

\[
RBC_t^1 - RBC_0^0 \approx f^*(RT_1, 1) - RBC_0^0 = f^*(RT_1, 1) - f^*(RT_0, 0) + (RBC_0^0 - RBC_0^0),
\]

wobei es sich bei \(RBC_0^0 \) lediglich um eine Rechenhilfsgröße zur Ermittlung von \(RBC_t^1 \) handelt. Das risikotragende Kapital zum Zeitpunkt \(t = 0 \), welches als solches in die SST-Berechnungen einfliesst, ist
unter Going-Concern-Annahmen $RBC^0_p = f^0(R_{0p}, 0)$ und nicht unter Run-Off-Annahmen zu berechnen (vgl. Rz 34 des FINMA-Rundschreibens 2017/3 "SST").

Vereinfachend betrachten wir damit das risikotragende Kapital RBC^T_1 unter Run-Off-Annahmen als eine Funktion f^T, die stochastisch ausschliesslich vom Risikotreiber-Vektor RT_t abhängt. Die Risikotreiber lassen sich wiederum aufteilen in Marktrisikotreiber RT_{tM}^i und Versicherungsrisikotreiber RT_{tI}^i. Marktrisikotreiber RT_{tM}^i können wiederum in Risikotreiber aufgeteilt werden, welche selber auch Risikofaktoren sind, $RT_{tM}^i = RF_{tM}^i (i = 1, ..., n_1)$, und solche, die durch Logarithmieren und Verschieben (Shiften) der Risikotreiber gewonnen werden ($i = n_1 + 1, ..., n_2$). Weiter gehen wir davon aus, dass für die Versicherungsrisikotreiber $RT_{tI}^i = RF_{tI}^i (i = n_2 + 1, ..., n)$ gilt. Somit lässt sich mit n Risikofaktoren der Vektor der Risikotreiber wie folgt aufteilen

$$RT_t = (RT_{tM}^1, RT_{tI}^1) = (RF_{tM}, RF_{tM}, RT_{tM}^{n_1+1}, ..., RF_{tI}, RF_{tI}, RF_{tI}^{n_2+1}, ..., RF_{tI}^{n}).$$

Im Kapitel 3 werden die Bewertungsfunktionen konkretisiert.

3 Bewertungsfunktionen und Delta-Ansatz im SST-Standardmodell für das Marktrisiko

3.1 Grundsatz

Die Grundidee des SST-Standardmodells für das Marktrisiko besteht darin, die wichtigsten Bilanzpositionen der meisten Versicherungsunternehmen auch in $t = 1$ exakt zu bewerten (d.h. ohne Approximation der Bewertungsfunktion) und lediglich die verbleibenden Bilanzpositionen mittels eines Delta-Ansatzes (d.h. mit einer linearen Approximation der Bewertungsfunktion) zu modellieren. In diesem Sinne kann das SST-Standardmodell für das Marktrisiko als eine Verfeinerung des zentrierten Delta-Ansatzes (der bis zum SST 2018 als vereinfachtes SST-Marktrisiko-Standardmodell eingesetzt wurde) angesehen werden.

Die folgende Tabelle gibt eine Übersicht über die wichtigsten Positionen, die im SST-Standardmodell für das Marktrisiko via exakte Bewertungsfunktion bzw. via Delta-Ansatz modelliert werden. Weitere Angaben befinden sich in den Kapiteln 5.3 und 5.5.

<table>
<thead>
<tr>
<th>Exakte Bewertungsfunktion</th>
<th>Delta-Ansatz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obligationen</td>
<td>Wandelanleihen</td>
</tr>
<tr>
<td>Fest-Hypotheken</td>
<td>Floating Rate Notes</td>
</tr>
<tr>
<td>Festverzinsliche Kredite und Darlehen mit fester Laufzeit</td>
<td>Swaps (Zinsswaps, FX-Swaps)</td>
</tr>
<tr>
<td>Aktien</td>
<td>Zinsgarantien</td>
</tr>
<tr>
<td>Immobilien</td>
<td>Caps/Floors</td>
</tr>
<tr>
<td>Immobilienfonds</td>
<td>(Eingebettete) Optionen auf zinssensitiven Positionen</td>
</tr>
</tbody>
</table>
Tabelle 1 Übersicht exakte Bewertung bzw. Delta-Ansatz

Wir beschreiben zuerst die (exakten) Bewertungsfunktionen für Aktiven mit direkt marktabhängigen Preisen (Aktien, Immobilien, etc.). Es folgen die Bewertungsfunktionen für festverzinsliche Anlagen, die als Barwert von deterministischen nominellen Cashflows darstellbar sind (Fixed Income Assets) und für die Teile der Versicherungsverpflichtungen, die sich als Barwerte von deterministischen nominellen Cashflows (respektive von Certainty-Equivalent-Werten) bewerten lassen. Schliesslich beschreiben wir die exakten Bewertungsfunktionen für Forwards. Diese Bewertungsfunktionen werden jeweils als konkrete Funktion der jeweiligen Risikotreiber / Risikofaktoren dargestellt.

Alle verbleibenden Bilanzpositionen bilden wir via Delta-Ansatz ab, welcher in Kapitel 3.3 erläutert ist.

Für die Herleitung der Bewertungsfunktion führen wir folgendes Modell ein:

\[
 f^r(t) = f_{\text{Price},A}(t) + f_{\text{Fixed},A}(t) + f_{\text{Forwards},A}(t) - f_{\text{M},M}(t) + \Delta(t)
\]

d.h. die Bewertungsfunktion \(f^r(t) \) des RBC unter Run-Off-Annahmen lässt sich vereinfacht approximieren durch die Summe der Bewertungsfunktionen für Aktiven mit direkt marktabhängigen Preisen, \(f_{\text{Price},A}(t) \), für Fixed-Income-Assets (festverzinsliche Anlagen), \(f_{\text{Fixed},A}(t) \) und für Forwards \(f_{\text{Forwards},A}(t) \) abzüglich die Bewertungsfunktion für Versicherungsverpflichtungen, \(f_{\text{M},M}(t) \), und zuzüglich ein Restterm \(\Delta(t) \), der via Delta-Ansatz modelliert wird.
3.2 Exakte Bewertungsfunktionen

Wir führen die oben beschriebenen Bewertungsfunktionen sukzessive ein.

3.2.1 Bewertungsfunktion für Aktiven mit direkt marktabhängigen Preisen

Die Bewertungsfunktion für Aktiven mit direkt marktabhängigen Preisen ist

\[f_{\text{Price}}(R_{t}^{\text{Price}}, RT_{t,FX}, t) = \sum_{i,j} E_{0,i,j} \cdot \exp \left(\Delta RF_{t,FX,j} + \beta_i \Delta RF_{t,i} + C^{\text{Price}}(RF_i, FX_j, \beta_i) \cdot t \right) \]

Hierbei

- \(E_{0,i,j} = \tilde{E}_{0,i,j} \cdot RT_{0,FX} \) bezeichnet den Marktwert bzw. den marktkonsistenten Wert der Aktiven zum Zeitpunkt \(t = 0 \) in CHF und \(\tilde{E}_{0,i,j} \) den entsprechenden Marktwert oder marktkonsistenten Wert in der Währung \(j \).
- \(\Delta RF_{t,i} = RF_{t,i} - RF_{0,i} \) sowie \(\Delta RF_{t,FX,j} = RF_{t,FX,j} - RF_{0,FX,j} \) sind die Veränderung des \(i \)-ten Preis- bzw. des \(j \)-ten Fremdwährungsrisikofaktors. Wir setzen, inspiriert von den entsprechenden geometrischen Brownschen Modellen in einem dynamischen Modell, \(RF_{0,i} = RF_{0,FX,j} = 0 \) und integrieren die Startwerte der Risikotreiber in \(E_{0,i} \).\(^5\)
- \((FX_j)_{j=1,...,5} = (\text{CHF}, \text{EUR}, \text{USD}, \text{GBP}, \text{JPY})\) bezeichnet die jeweils verwendete Währung und \(RT_{t,FX,j}, j \in \{1, ..., 5\} \) den Risikotreiber zur entsprechenden Währung zum Zeitpunkt \(t \in \{0,1\} \).
- \(RT_{0,FX,j} \) ist der Wechselkurs gemäß FINMA-Vorgabe, vgl. Excel-Datei SST-Template.xlsx, Blatt Market Initial Values.
- \(\beta_i \) ist ein Assetklassen-abhängiger Skalierungsfaktor, der ausser in explizit bezeichneten Ausnahmefällen jeweils durch 100 % gegeben ist. Die Ausnahmefälle sind
 - Wohnimmobilien: Der Preisveränderungsfaktor für Wohnimmobilien ist durch Skalierung der Volatilität des Risikofaktors für Immobilienfonds mit Skalierungsfaktor \(\beta = \sigma_{\text{Immobilien}} / \sigma_{\text{RdRiass}} \) bestimmt.
 - Immaterial Beteiligungen: Diese werden mit einem auf eine standardnormalverteilte Zufallsvariable angewendete Skalierungsfaktor (\(\beta = 25 \% \)) ausgewertet und komponenten aggregiert. Der Skalierungsfaktor widerspiegelt damit hier gerade die Volatilität.
- \(C^{\text{Price}}(RF_i, FX_j, \beta_i) \) ist ein Normierungsterm, definiert als
 \[C^{\text{Price}}(RF_i, FX_j, \beta_i) := - \frac{1}{2} \left(\text{Var} \left(\Delta RF_{i,FX,j} \right) + \beta_i^2 \text{Var} \left(\Delta RF_{i,i} \right) + 2 \beta_i \text{Cov} \left(\Delta RF_{i,FX,j}, \Delta RF_{i,i} \right) \right) \]

3.2.2 Festverzinsliche Anlagen und Versicherungsverpflichtungen

Die Bewertungsfunktion \(f^{\text{fx}}(x) \) für festverzinsliche Anlagen ist

\(^5\) Wir gehen in Abschnitt 3.3.3 näher auf diesen Punkt ein.
\[f^{fix,\alpha}_{t}(RT_{t}^{fix}, RT_{t, FX}, t) := \sum_{j,r,t} E_{t}^{A,r,j} \cdot \exp \left(\Delta R_{t, FX,j} - \left(\Delta R_{j}(t,i_{r}) + \alpha_{j,r} \cdot \Delta S(t,j,r) \right) \cdot \tau + C^{A,fix}(r, \alpha_{j,r}, \tau, FX_{j}) \cdot t \right) \]

wobei neben den bereits weiter oben eingeführten Bezeichnungen

- \(E_{t}^{A,r,j} \) der "CHF-marktnahe Wert in \(t = 0 \) der Fixed-Income-Cashflows \(CF_{t}^{A,r,j} \) mit Rating \(r \) in Währung \(FX_{j} \) mit einer Restlaufzeit von \(\tau \) ist, also

\[E_{t}^{A,r,j} = CF_{t}^{A,r,j} \cdot RT_{0, FX,j} \cdot \exp \left(- \left(R_{j}(0, \tau) + S(0, r,j) \right) \cdot \tau \right) \]

- \(R_{j}(t, \tau) \) (wobei hier \(R_{j}(1, \tau) := R_{j}(0, \tau) + \Delta R_{j}(1, \tau) \)) bezeichnet den stetigen Zins der \(j \)-ten Währung (\(j \in \{1,2,3,4,5\} \)) mit Restlaufzeit \(\tau \in \{1, ... ,50\} \) zum Zeitpunkt \(t \in \{0,1\} \). \(R_{j}(0, \tau) \) entspricht der Zinskurve gemäss FINMA-Vorgabe (vgl. Excel-Datei SST-Template.xlsx, Blatt Market Initial Values).

- \(\Delta R_{j}(t, \tau) := R_{j}(t, \tau) - R_{j}(0, \tau) \) ist die Einjahreszinsveränderung, wobei für JPY die Veränderungen der USD-Zinsen herangezogen werden. Wir verwenden hier die Notation \(\tilde{R}_{j} \) anstatt \(R_{j} \), da die Möglichkeit besteht, dass die Bewertungszinskurven nicht mit derjenigen Kurve übereinstimmt, mit welcher die stochastischen Schwankungen erzeugt werden.\(^6\)

- \(i_{\tau} \) bezeichnet folgende Projektion der Restlaufzeiten

\[\tau \mapsto i_{\tau} \quad i_{\tau} := \begin{cases} 2 (=: k) & \tau = 1, ..., 5 \\ 10 (=: m) & \tau = 6, ..., 19 \\ 30 (=: l) & \tau = 20, ..., 50 \end{cases} \]

- \(\alpha_{j,r} \) ist ein Faktor abhängig von Rating und Währung, mit dem die Volatilität skaliert wird. Für AAA-Ratings und BB-Ratings werden (skalierte) US-Spreads verwendet, wie in der Excel-Datei SST-Template.xlsx, Blatt Market Risk (Static) spezifiziert.

- \(S(t,j,r) \) (wobei hier \(S(1,j,r) := S(0,j,r) + \Delta S(1,j,r) \)) bezeichnet den Modell-Spread in der \(j \)-ten Währung (\(j \in \{1,2,3,4,5\} \)) zum Zeitpunkt \(t \in \{0,1\} \). Modell-Spreads sind abhängig vom Rating \(r \in \{GOV1, EU GO, CANT, CORP, AAA, AA, A, BBB, BB\} \) aber nicht von der Laufzeit. \(GOV1 \) bezeichnet Staatsanleihen von Staaten mit unabhängiger Geldpolitik, deren Zinsen im SST-Standardmodell für das Marktrisiko abgebildet sind (Schweiz, Vereinigtes Königreich und Vereinigte Staaten), souveräne Staaten des Euroraums mit einem AAA-Rating und Schweizer Hypotheken, wenn das SST-Standardmodell für das Kreditrisiko verwendet wird. \(EU GO, CANT, CORP \) beziehen sich auf Assetklassen, die durch eine gleichnamige Spread-Zeitreihe repräsentiert werden, wie in den Abschnitten 5.3 und 5.7 beschrieben.

Wir erhalten \(S(0,r,j) \) durch lösen der Gleichung

\(^6\) Bsp.: Bewertungskurve (im RBC): SNB kombiniert mit UFR, Variation der Kurve für TC basierend auf SNB-Kurve, etc.
\[\tilde{E}(0,r,j) = \sum_{\tau} CF^A_{\tau} \cdot \exp \left(-\left(R_j(0,r) + S(0,r,j) \right) \tau \right) \]

wobei \(\tilde{E}(0,r,j) \) der marktnahe Wert aller Positionen in der Währung \(j \) bezeichnet, die auf das Rating \(r \) abgebildet werden. \(\Delta S(t,j,r) = \tilde{S}(t,j,r) - \tilde{S}(0,j,r) \) entspricht der Veränderung der Spreads. Wir verwenden hier die Notation \(\tilde{S} \) anstatt \(S \), da wir für die Spreads Veränderung gemäß Abschnitt 5.6 in Verbindung mit Abschnitt 5.7 verwenden.

- \(C^Afix(r,\alpha_{j,r},r,r,FX_j) \) ist ein Normierungsterm, definiert als

\[
C^Afix(r,\alpha_{j,r},r,r,FX_j) := -\frac{1}{2} \left(\text{Var} \left(\Delta RF_{1,FX_j} \right) - 2\tau \left(\text{Cov} \left(\Delta RF_{1,FX_j}, \Delta R_j(1,i_r) \right) + \alpha_{j,r} \text{Cov} \left(\Delta R_j(1,i_r) \right) \right) + \tau^2 \left(\text{Var} \left(\Delta R_j(1,i_r) \right) + \alpha_{j,r} \text{Var} \left(\Delta S(1,r,j) \right) \right) + 2\text{Cov} \left(\Delta R_j(1,i_r), \Delta S(1,r,j) \right) \right).
\]

Die Bewertungsfunktion für Versicherungsverpflichtungen \(f^{r,M}_{IL} \) ist analog definiert

\[
f^{r,M}_{IL}(A_0, IL_0, RT_t, t) := \sum_{j,r} E^{IL,j}_{\tau} \cdot \exp \left(\Delta RF_{t,FX_j} - R_j(t,i_r) \cdot \tau + C^{IL}(\tau,FX_j) \cdot \tau \right)
\]

wobei

- \(E^{IL,j}_{\tau} \) der CHF-marktnahe Wert in \(t = 0 \) der Certainty-Equivalent-Versicherungsverpflichtungs-Cashflows \(CF^{IL,j}_{\tau} \) in Währung \(FX_j \) mit einer Restlaufzeit von \(\tau \) ist, also

\[
E^{IL,j}_{\tau} := CF^{IL,j}_{\tau} \cdot RT_{t,FX_j} \cdot \exp \left(-R_j(0,\tau) \cdot \tau \right).
\]

Für die Zielkapitalberechnung sind die Cashflows gemäss den technischen Beschreibungen zu den einzelnen Sparten zu verwenden. Die Veränderung des Best Estimates der Versicherungsverpflichtungen aufgrund von veränderten versicherungstechnischen Risikofaktoren oder aufgrund der Veränderung des TVOGs (falls materiell) sowie der Veränderungen von UVG-Renten und Langfristleistungen in Abhängigkeit der Zinsen, werden durch den in Abschnitt 3.3 erläuterten Delta-Ansatz berücksichtigt.

- \(C^{IL}(\tau,FX_j) \) ist ein Skalierungsfaktor definiert als

\[
C^{IL}(\tau,FX_j) := -\frac{1}{2} \left(\text{Var} \left(\Delta RF_{1,FX_j} \right) + \tau^2 \text{Var} \left(\Delta R_j(1,i_r) \right) - 2\tau \text{Cov} \left(\Delta RF_{1,FX_j}, \Delta R_j(1,i_r) \right) \right)
\]
3.2.3 Forwards

Die Forwards-Bewertungsfunktion \(f_{Forwards,A} \) für Forwards, welche nicht im Delta-Ansatz abgebildet werden, lässt sich als Summe zweier Bewertungsfunktionen schreiben: die der FX-Forwards \(f_{Forw,FX} \) und die der Index-Forwards \(f_{Forw,index} \). Bei diesen zwei Bewertungsfunktionen handelt es sich jeweils um Summen von Long- und Short-Forwards der entsprechenden Forwards-Art (FX, Index). Die oben genannten Funktionen führen wir wie folgt ein

\[
f_{Forwards,A}(R_{t}^{fix}, R_{t}^{Price}, R_{t,FX}, t):= f_{Forw,FX}(R_{t}^{fix}, R_{t,FX}, t) + f_{Forw,index}(R_{t}^{fix}, R_{t}^{Price}, R_{t,FX}, t)
\]

\[
f_{Forw,FX}(R_{t}^{fix}, R_{t,FX}, t) := \sum_{i,j} \left((\pm 1) \cdot E_{t}^{N,i,j} \cdot \exp \left(\Delta R_{t,FX,j} - \Delta R_{j}(t,i_{t}) \cdot \tau + C_{t}^{AFXP}(\tau,FX_{j}) \cdot t \right) \right)
\]

mit

\[
E_{t}^{N,i,j} = N_{t}^{j} \cdot R_{0,FX,j} \cdot \exp(-R_{j}(0, \tau) \cdot \tau)
\]

und

\[
E_{t}^{N,F} := \bar{F}_{t} \cdot N_{t}^{j} \cdot \exp(-R_{j}(0, \tau) \cdot \tau)
\]

\[
f_{Forw,index}(R_{t}^{fix}, R_{t}^{Price}, R_{t,FX}, t) := \sum_{i,j} \left((\pm 1) \cdot E_{0,i,j}^{*} \cdot \exp \left(\Delta R_{t,FX,j} + \beta_{i} \Delta R_{t,i_{i}}^{*} + C_{t}^{APrice}(RF_{i},FX_{j}, \beta_{i}) \cdot t \right) \right)
\]

mit

\[
E_{0,i,j}^{*} = R_{0,FX,j} \cdot \bar{E}_{0,i,j}
\]

und

\[
E_{t}^{*} \cdot \exp(-R_{j}(0,i_{i}) \cdot \tau) \cdot R_{t,FX,j}
\]

Die Multiplikation mit \((\pm 1)\) in den Formeln bestimmt, ob es sich bei dem Summanden um einen Long- oder um einen Short-Forward handelt. Bei *+* handelt es sich um einen Long-Forward.

- \(N_{t}^{j}\) stellt das Nominal in der \(j\)-ten Währung mit Restlaufzeit \(\tau\) dar und \(\bar{F}_{t}\) ist die entsprechende FX-Forwardrate gemäß abgeschlossenem Vertrag mit Restlaufzeit \(\tau\). Die Normierungskonstanten haben die Form

\[
7\text{ Anstatt alle Verträge separat abzubilden, kann bei Verträgen mit gleicher Restlaufzeit } \tau \text{ die gewichtete Forwardrate mit entsprechendem Nominal verwendet werden. Es seien } U \text{ die Anzahl zu früheren Zeitpunkten abgeschlossene FX-Forward-Verträgen, } \bar{F}_{t}^{u} (u = 1, …, U) \text{ die entsprechenden FX-Forwardraten und } N_{t}^{u} \text{ die entsprechenden Nominalen. Die gewichtete Forwardrate ist dann } \bar{F}_{t}^{*} = \sum_{u} \omega_{u} \bar{F}_{t}^{u} \text{ mit Gewicht } \omega_{u} = \frac{N_{t}^{u}}{\sum_{u} N_{t}^{u}} \text{ und der zu verwendende Nominal ist } N_{t}^{*} = \sum_{u} N_{t}^{u}.}
\]
\[C^{A\text{FXF}}(\tau, FX_j) = -\frac{1}{2} \left(\text{Var}\left(\Delta R_{F_i, FX_j} \right) - 2\tau \text{Cov}\left(\Delta R_{F_i, FX_j}, \Delta R_j(1, i_\tau) \right) + \tau^2 \text{Var}\left(\Delta R_j(1, i_\tau) \right) \right). \]

- \(F^I_i \) stellt die Index-Forwardrate gemäss abgeschlossenem Vertrag mit Restlaufzeit \(\tau \) in der \(j \)-ten Währung dar und \(E_{0,i,j} \) ist das Underlying-Exposure zum SST-Stichtag in der \(j \)-ten Währung. Der Betrag \(F^I_i \) sollte also bei einer möglichst vollständigen Absicherung eine ähnliche Grössenordnung wie \(E_{0,i,j} \) haben.

Die Normierungskonstante erfüllt die Gleichung \(C^{A\text{IF}}(\tau, FX_j) = C^{A\text{FXF}}(\tau, FX_j) \).

Bemerkungen:

- Bei den unter 3.2.1 und 3.2.2 beschriebenen Bewertungsfunktionen werden die Ausgangsexposures direkt mit lognormal verteilt\(^9\) stochastischen Veränderungsfaktoren (Preisveränderungsfaktoren, respektive Veränderungsfaktoren der Diskontfaktoren) multipliziert, um die Werte zum Jahresende zu ermitteln.
- Durch die Normierungsterme \(C^{A\text{fix}}(r, \alpha, F, X_j), C^{A\text{Price}}(RF_i, FX_j, \beta_i) \) und \(C^{\text{IL}}(\tau, FX_j) \) werden aufgrund der im Abschnitt 2.4 definierten Normalverteilungsannahme der Risikofaktorveränderungen die stochastischen Veränderungsterme im Erwartungswert auf eins normiert.
- Szenarien: Im Rahmen der Auswertung der makroökonomischen Szenarien werden die Normierungsterme auf null gesetzt.

3.3 Delta-Ansatz

Dieser Abschnitt beschreibt den Delta-Ansatz, welcher bei den Bilanzpositionen, die nicht durch exakte Bewertungsfunktionen ermittelt werden, zur Anwendung kommt. Es handelt sich dabei um die Positionen, welche in Formel 1 unter den Restterm \(\Delta(\cdot) \) subsummiert sind.

\[\Delta(A_0, \tilde{A}_0, IL_0, OL_0, RT_i) \] bezeichnet den Restterm, der mit dem Delta-Ansatz berücksichtigt wird. Er setzt sich additiv zusammen aus den Termen

- \(\Delta^M(A_0, \tilde{A}_0, IL_0, OL_0, RT_i) \) bezeichnet den Marktrisiko-Restterm, der mit dem Delta-Ansatz berücksichtigt wird. Dieser Restterm wird je nach Portfolio benötigt, um Aktiven und Verpflichtungen zu modellieren, die nicht mit den Funktionen \(f^{\text{fix}}, f^{\text{Price}}, f^{\text{Forwards}}, f^{\text{Int}} \) sinnvoll modelliert werden können.

\(^8 \) Anstatt alle Verträge separat abzubilden, kann bei Verträgen mit gleicher Restlaufzeit \(\tau \) die Summe der Forwardraten verwendet werden mit entsprechendem Exposure. Es seien \(U \) die Anzahl an früheren Zeitpunkten abgeschlossenen Index-Forward Verträgen, \(\tilde{F}^{I_u}_i(u = 1, \ldots, U) \) mit Exposure zum SST-Stichtag in der Fremdwährung \(E_{0,i,j}^{u} \) mit gleichen Restlaufzeiten \(\tau \). Die Summe der Forwardraten ist dann \(\sum \tilde{F}^{I_u}_i = \sum \tilde{F}^{I_u}_i \) mit der dazu verwendeten Summe der Exposures zum SST-Stichtag in der fremden Währung \(E_{0,i,j}^{u} = \sum E_{0,i,j}^{u} \).

\(^9 \) Siehe Abschnitte 2.4, 3.2 und 3.3.3
• \(\Delta^I(IL, \omega, RT_t) \) bezeichnet den Term, welcher die Veränderung der Bewertungsfunktion \(f^\tau \) anhand eines Delta-Ansatzes von den Lebens- und Krankenversicherungsrisiken beschreibt.

Unter gewissen Regularitätsannahmen erhält man anhand der Taylor-Approximation 1. Ordnung eine approximative Darstellung der Veränderung der Bewertungsfunktion. Dadurch resultiert insbesondere eine additive Aufteilung der Veränderung der Bewertungsfunktion bezüglich stochastischer Abhängigkeit von Markt-(\(M \)) bzw. Versicherungsrisikotreiber (\(I \)) \(RT_t = (RT_t^M, RT_t^I) \).

Wir verwenden nachfolgend risikolos diskontierte, aufgrund der Ausführungen im Abschnitt 4, zentrierte Größen. Zusätzlich ersetzen wir die Ableitungen durch Differenzenquotienten mit relativ grossen Auslenkungen.

3.3.1 Marktrisiken

Der Wert der Aktiva \(V(A_t) \) und der Best Estimate der Versicherungsverpflichtungen zusammen mit dem Wert der übrigen Verbindlichkeiten \(V(L_t) \), welche nicht mit den (exakten) Funktionen \(f^{fixA}, f^{PriceA}, f^{ForwardsA} \) und \(f^{rt,M}_I \) modelliert werden können\(^1\), approximieren wir im SST-Standardmodell für das Marktrisiko durch

\[
V(A_t) \approx \Delta^M(A_0, RT_t) := V(A_0) + \sum_{k=1}^{D_1} \frac{\partial V(A_0)(RT_0)}{\partial (RF_{0,k}^M)}(RF_{t,k}^M - RF_{0,k}^M) + \sum_{k=n_1+1}^{n_2} \frac{\partial V(A_0)(RT_0)}{\partial (RT_{0,k}^M)}(RT_{t,k}^M - RT_{0,k}^M)
\]

\[
V(L_t) \approx \Delta^L(A_0, IL_0, OL_0, RT_t) := V(A_0, IL_0, OL_0) + \sum_{k=1}^{D_1} \frac{\partial V(A_0, IL_0, OL_0)(RT_0)}{\partial (RF_{0,k}^M)}(RF_{t,k}^M - RF_{0,k}^M) + \sum_{k=n_1+1}^{n_2} \frac{\partial V(A_0, IL_0, OL_0)(RT_0)}{\partial (RT_{0,k}^M)}(RT_{t,k}^M - RT_{0,k}^M)
\]

wobei \(\Delta^M \) bzw. \(\Delta^L \) der Marktrisiko-Restterm der Aktiva bzw. der Versicherungsverpflichtungen darstellen. In den ersten Summanden \(\sum_{k=1}^{D_1} (...) \) verwenden wir jeweils, dass die Risikotreiber und die Risikofaktoren übereinstimmen. Zur Erhöhung der Lesbarkeit haben wir dabei auf die Darstellung der Skalierungsfaktoren verzichtet. Für die Implementierung sind die Risikofaktoren jedoch inklusive Skalierungsfaktoren zu verwenden.

Der Marktrisiko-Restterm definieren wir als

\[
\Delta^M(A_\omega, \tilde{A}_\omega, IL_\omega, OL_\omega, RT_t) := \Delta^M(A_0, RT_t) - \Delta^M(A_\omega, IL_\omega, OL_\omega, RT_t)
\]

\(^1\) Beachte, dass dies einen gewissen "Abuse of Notation" darstellt, da sich in Abschnitt 2.1 die Ausdrücke \(V(A_t), V(L_t) \), etc. auf den gesamten Bestand und nicht nur auf die nicht exakt abbildbaren Teile beziehen.
3.3.2 Exkurs: Versicherungstechnische Risiken

In den Sparten Leben und Kranken werden die Versicherungsrisiken via Delta-Ansatz modelliert.

In der Sparte Leben approximieren wir die Veränderung der Bewertungsfunktion \(f^R \) als Funktion der versicherungstechnischen Risikofaktoren durch

\[
\Delta^i(1L_0, RT_i) = \sum_{k=n+1}^n (RF^M_{1,k} - RF^M_{0,k}).
\]

Bei den Lebensversicherungsrisiken nutzen wir somit als "Risikofaktoren" direkt die portfoliospezifische Variation des \(RBC \), die sich aufgrund der Variation versicherungstechnischer Parameter ergeben, wie Sterblichkeit (und nicht als Risikofaktor die Sterblichkeit selbst). Zur Vereinfachung der Notation bezeichnen wir diese portfoliospezifischen Risikofaktoren weiterhin mit \(RF^M_{1,k} \). Dies bedeutet, dass alle partiellen Ableitungen bezüglich der portfoliospezifischen Risikofaktoren weiterhin mit \(RF^M_{1,k} \) durch die Konstante mit dem Wert Eins gegeben sind. Für weitergehende Referenzen verweisen wir auf die technische Beschreibung für das SST-Standardmodell Lebensversicherung.

3.3.3 Sensitivitäten für die Marktrisiken

Wir gehen nun auf die Berechnung der Sensitivitäten für die Marktrisiken genauer ein.

Insiiert von der stochastischen Differenzialgleichung für Geometrische Brownsche Bewegungen\(^{11} \) verwenden wir für die Risikotreiber, die nicht selber normalverteilt sind, die folgende Approximation Formel 2

\[
\Delta R^M_{1,k} = (RT^M_{1,k} - RT^M_{0,k}) \approx RT^M_{0,k} \cdot (RF^M_{1,k} - RF^M_{0,k}),
\]

wobei hier jeweils \(RF^M_{0,k} = 0 \) gilt, da eine skalierte (ggf. geshiftete) Brownsche Bewegung in Null startet. Für die Berechnung der Sensitivitäten werden folgende Differenzenquotienten verwendet:

- Für die Risikofaktoren mit \(RT^M_{1,i} = RF^M_{1,i} \)

\[
\frac{\partial V(RT_0)}{\partial (RF^M_{0,k})} (RF^M_{1,k} - RF^M_{0,k}) \approx \frac{V(RF^M_{0,k} + h_+) - V(RF^M_{0,k} - h_-)}{h_+ + h_-} (RF^M_{1,k} - RF^M_{0,k}),
\]

wobei wir auf der rechten Seite der Gleichung zur Vereinfachung der Notation die Abhängigkeit \(V(\cdot) \) von allen übrigen als dem jeweils ausgelenken Risikotreiber vernachlässigt haben. Die Zahlen \(h_+ \) und \(h_- \) definieren die Grösse der Auslenkungen, siehe Abschnitt 5.4. Diese vereinfachende Notation verwenden wir in den nachfolgenden Ausführungen kommentarlos weiter.

\(^{11}\) Der bekannteste Fall ist der (diskontierte) Aktienpreisprozess. Der Prozess \(S \) – definiert durch \(S_t = S_0 \exp(\int_0^t \lambda_s ds - \frac{1}{2} \sigma^2 t + \sigma W_t) \) – löst die stochastische Differenzialgleichung (SDE) \(dS_t = S_t(\lambda_t dt + \sigma dW_t) \), wobei \(W_t = (W_t)_t \) für eine standard Brownsche Bewegung (die in Null startet) und \(\lambda_t = (\lambda_t)_t \) für einen sogenannten "Drift" steht. Eine Diskretisierung dieser SDE führt auf Formel 2 mit \(RF^M_{0,k} = 0 \) (da der Exponent in Null startet).
Bei den Risikotreibern, die selbst nicht normalverteilt sind, werden die Sensitivitäten ebenfalls bezüglich der Risikotreiber ermittelt, hier jeweils aber durch relative Auslenkungen

\[
\frac{\partial V(R_T)}{\partial (RT_{0,k})} (RT_{1,k}^M - RT_{0,k}^M) \approx \frac{V \left(RT_{0,k}^M (1 + h_+) \right) - V \left(RT_{0,k}^M (1 - h_-) \right)}{(h_+ + h_-) \cdot RT_{0,k}^M} \cdot (RF_{1,k}^M - RF_{0,k}^M),
\]

wobei wir ebenfalls die Approximation der Veränderung der Risikotreiber in Formel 2 verwendet haben. Durch die Verwendung von relativen Auslenkungen soll primär gewährleistet werden, dass die Differenzenquotienten bezüglich Auslenkung relativ zu den teilweise sehr unterschiedlichen Ausgangswerten der Risikotreiber in ähnlicher Weise festgelegt werden. Diesbezüglich gilt es zu bemerken, dass die durch die Differenzenquotienten beschriebenen linearen Approximationen die Bewertungsfunktion bezüglich des Tails des RBC in gewissen Situationen besser beschreiben, als diejenige, die durch die partiellen Ableitungen beschrieben wird.

Wir können nun

\[RT_{0,k}^M \]

kürzen und erhalten

\[
\frac{\partial V(R_T)}{\partial (RT_{0,k})} (RT_{1,k}^M - RT_{0,k}^M) \approx \frac{V \left(RT_{0,k}^M (1 + h_+) \right) - V \left(RT_{0,k}^M (1 - h_-) \right)}{(h_+ + h_-)} \cdot (RF_{1,k}^M - RF_{0,k}^M).
\]

Wir definieren nun den n-dimensionalen, konsistenten "Sensitivitätsvektor" bezüglich Inkremente der Risikofaktoren wie folgt

\[\delta = (\delta_1, ..., \delta_{n_1}, \delta_{n_1+1}, ..., \delta_{n_2}, 1, ..., 1) \]

mit

\[\delta_i = \frac{V(RF_{0,i}^M + h_+) - V(RF_{0,i}^M - h_-)}{(h_+ + h_-)}, \quad i \in \{1, ..., n_1\} \]

und

\[\delta_j = \frac{V \left(RT_{0,j}^M (1 + h_+) \right) - V \left(RT_{0,j}^M (1 - h_-) \right)}{(h_+ + h_-)} \approx \frac{\partial V(R_T)}{\partial (RT_{0,j})} \cdot RT_{0,j}, \quad j \in \{n_1 + 1, ..., n_2\}. \]

3.4 Zusammenfassung

Aufgrund der in den Abschnitten beschriebenen Herleitungen ergibt sich für die Veränderung des RBC
\[
RBC_1^r - RBC_0^r \approx f^r(RT_1, 1) - RBC_0^r = f^r(RT_1, 1) - f^r(RT_0, 0) + (RBC_1^r - RBC_0^r)
\]
\[
= f^{fix A}(RT_{1,fix}, RT_{1,fix}, 1) - f^{fix A}(RT_0^{fix}, RT_{0,fix}, 0)
+ f^{Price A}(RT_{1,Price}, RT_{1,Price}, 1) - f^{Price A}(RT_0^{Price}, RT_{0,Price}, 0)
+ f^{Forwards A}(RT_{1,fix}, RT_0^{Price}, RT_{1,Price}, 1) - f^{Forwards A}(RT_0^{fix}, RT_0^{Price}, RT_{0,Price}, 0)
- f^{Ix M}_{I\mathcal{L}}(I\mathcal{L}_0, RT_1, 1) + f^{Ix M}_{I\mathcal{L}}(I\mathcal{L}_0, RT_0, 0)
+ \Delta(A_0, \tilde{A}_0, I\mathcal{L}_0, OL_0, RT_1) - \Delta(A_0, \tilde{A}_0, I\mathcal{L}_0, OL_0, RT_0) + (RBC_0^r - RBC_0^r).
\]

4 Zentrierung und erwartetes Ergebnis

4.1 Zentrierung

Zukünftige Drifts von Anlagen lassen sich nicht zuverlässig schätzen, denn zurzeit existieren keine zuverlässigen robusten Schätzer. Die stark komplexitätsreduzierende Stationaritätsannahme bei der Bewertung der Versicherungsverpflichtungen führt zudem dazu, dass allfällige passivseitige Einflüsse auf das erwartete finanzielle Ergebnis über risikofreier Verzinsung nicht direkt in die Marktrisikomodellierung einfließen.

Das erwartete finanzielle Ergebnis über risikofreier Verzinsung kann damit nicht direkt via Drifts von Risikofaktoren in die Berechnung des Einjahresrisikokapitals integriert werden. Vielmehr sind zentrierte Größen zu betrachten

\[
\Delta R = (\Delta R_{F,1}, ..., \Delta R_{F,n}) = (\Delta R_{F,1} - \mathbb{E}[\Delta R_{F,1}], ..., \Delta R_{F,n} - \mathbb{E}[\Delta R_{F,n}]),
\]

mit

\[
\Delta R_{F,i} = R_{F,i} - R_{F,0,i}, \quad i \in \{1, ..., n\},
\]

wobei der Index \(u \) für unzentrierte Risikofaktoren steht. Wir unterstellen, dass dieser (um Null) zentrierte Vektor \(\Delta R \) multivariat normalverteilt ist.

4.2 Erwartetes finanzielles Ergebnis

Da die Berechnung des Risikokapitals zentriert erfolgt, werden die Effekte aus dem erwarteten finanziellen Ergebnis über risikofreier Verzinsung via Zusatzrechnung berücksichtigt. Im SST-Standardmodell für das Marktrisiko wird das erwartete finanzielle Ergebnis durch Berücksichtigung folgender Grössen bestimmt:

- die erwartete Rendite über risikofreier Verzinsung: wird durch von der FINMA festgelegte aktiva-spezifische Faktoren bestimmt:
 - Staatsanleihen: 0 bps
 - Spreadrisikobehaftete, festverzinsliche Investitionen: 65 bps (für Hypotheken, siehe unten),
 - Hypotheken: 150 bps
 - Aktien: 400 bps,
 - Private Equity: 500 bps,
 - Hedgefonds: 200 bps,
 - Immobilien: 300 bps
 - Assets im Deltamodell: unternehmensspezifisch anhand obiger Richtwerte
- der Skalierungsfaktor γ. Mit diesem Skalierungsfaktor wird berücksichtigt, dass sich bei einer Integration von positiven Drifts bei geometrischen Effekten die Varianz der entsprechenden Aktiven erhöht. Ebenfalls werden Effekte von der Passivseite der Bilanz wie Versicherungsnehmerbeteiligungen abgegolten. Aktuell gilt für Lebensversicherer $\gamma = 0.8$ und für Versicherungsunternehmen aller anderen Sparten $\gamma = 0.9$.

Das erwartete finanzielle Ergebnis (EFR) ergibt sich schliesslich als

$$ EFR = \gamma \cdot \sum_i \text{return over riskfree}_i \cdot \text{exposure}_i $$

5 Marktrisikotreiber, Mappingregeln, Schätzmethode und Datengrundlage

In diesem Kapitel werden ausgehend von dem in den Kapiteln 2 und 3 hergeleiteten theoretischen Modellrahmen, die zusätzlichen Elementen definiert, welche gemeinsam mit den versicherungsspezifischen Angaben, für die Berechnung des Marktrisikos notwendig sind.

Es werden insbesondere folgende Elemente beschrieben:

- die im SST-Standardmodell für das Marktrisiko berücksichtigten Marktrisikotreiber;
- die Anwendung der Marktrisikotreiber im Rahmen der exakten Bewertung;
- die zu berücksichtigenden Positionen nach Marktrisikotreiber und Mappingregeln bei exakten Bewertungsfunktionen;
die Bedeutung und Ermittlung der Sensitivitäten im Delta-Ansatz;
• die Datengrundlage;
• die Schätzmethode für die Bestimmung der Volatilitäten und Korrelationsmatrix.

5.1 Marktrisikotreiber

Das SST-Standardmodell für das Marktrisiko umfasst insgesamt 41 Marktrisikotreiber, wobei für die Auswertung der exakten Bewertungsfunktionen lediglich 37 zur Anwendung kommen. Es sind dies

• Zinsen (Zero Rates) für die Währungen CHF, EUR, USD und GBP und Laufzeitbänder kurz-, mittel- und langfristig [4*3 Risikotreiber]
• Implizite Zinssvolatilität [1 Risikotreiber] (Für exakte Bewertungsfunktionen nicht verwendet).
• Credit Spreads [11 Risikotreiber]
• Swap Government Spread [1 Risikotreiber] (Für exakte Bewertungsfunktionen nicht verwendet).
• Wechselkurse: EUR/CHF, USD/CHF, GBP/CHF, JPY/CHF [4 Risikotreiber]
• Implizite FX-Volatilität [1 Risikotreiber] (Für exakte Bewertungsfunktionen nicht verwendet).
• Aktienmärkte: Schweiz, Europa, Vereinigte Staaten, Vereinigtes Königreich, Japan [5 Risikotreiber]
• Implizite Aktienvolatilität [1 Risikotreiber] (Für exakte Bewertungsfunktionen nicht verwendet).
• Hedgefonds [1 Risikotreiber]
• Private Equity [1 Risikotreiber]
• Immobilien Schweiz: direkte Wohnimmobilien und Immobilienfonds [2 Risikotreiber].
• Beteiligungen [1 Risikotreiber]

Da der Risikotreiber Wohnimmobilien Schweiz durch Skalierung der Volatilität des Risikotreibers für Immobilienfonds generiert wird, werden lediglich 40 Risikofaktoren jeweils eigenständig stochastisch modelliert. Der Wohnimmobilien-Skalierungsfaktor wird jeweils aufgrund historischer Daten geschätzt.

5.2 Anwendung der Marktrisikotreiber bei exakten Bewertungsfunktionen

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Bedeutung</th>
<th>Funktionsweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinsen (Zero Rates) (CHF; EUR; USD; GBP)</td>
<td>Pro Simulation werden nominale Cashflows mit einer Restlaufzeit von bis und mit 5 Jahren basierend auf diesem Zinssatz diskontiert.</td>
<td>Anwendung der Bewertungsfunktion auf ausgelenkte Risikofaktoren (mit exakter Restlaufzeit).</td>
</tr>
<tr>
<td>Kurzfristig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinsen (Zero Rates) (CHF; EUR; USD; GBP)</td>
<td>Pro Simulation werden nominale Cashflows mit einer Restlaufzeit von mehr als 5 Jahren und weniger als 19 Jahren basierend auf diesem Zinssatz diskontiert.</td>
<td>Analog zu den kurzfristigen Zinsen.</td>
</tr>
<tr>
<td>Mittelfristig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langfristig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implizite Zinsvolatilität (zu Bachelier Modell)</td>
<td>Produkte, die eine Sensitivität bezüglich dieses Risikofaktors aufweisen, werden via Delta-Ansatz abgebildet, siehe Abschnitt 5.4.</td>
<td></td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Bedeutung</td>
<td>Funktionsweise</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Ebenfalls enthalten in den Bewertungsfunktionen der explizit abgebildeten Forwards.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FX USD/CHF</td>
<td>Analog zu EUR/CHF</td>
<td>Analog zu „FX EUR/CHF“</td>
</tr>
<tr>
<td>FX GBP/CHF</td>
<td>Analog zu EUR/CHF</td>
<td>Analog zu „FX EUR/CHF“</td>
</tr>
<tr>
<td>FX JPY/CHF</td>
<td>Analog zu EUR/CHF</td>
<td>Analog zu „FX EUR/CHF“</td>
</tr>
<tr>
<td>Implizite FX-Volatilität</td>
<td>Produkte, die eine Sensitivität bezüglich dieses Risikofaktors aufweisen, werden via Delta-Ansatz abgebildet, siehe Abschnitt 5.4</td>
<td></td>
</tr>
<tr>
<td>Aktien</td>
<td>Exposures werden pro Simulation mit dem Preisveränderungsfaktor multipliziert (inklusive Devisenkursveränderung).</td>
<td>Die Bewertungsfunktion ergibt sich aus der Multiplikation des Exposures mit dem jeweiligen Preisveränderungsfaktor, respektive aus der expliziten Funktion für Index-Forwards.</td>
</tr>
<tr>
<td>Schweiz</td>
<td>Ebenfalls enthalten in den Bewertungsfunktionen der explizit abgebildeten Aktien Forwards.</td>
<td></td>
</tr>
<tr>
<td>EMU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implizite Aktienvolatilität</td>
<td>Produkte, die eine Sensitivität bezüglich dieses Risikofaktors aufweisen, werden via Delta-Ansatz abgebildet, siehe Abschnitt 5.4</td>
<td></td>
</tr>
<tr>
<td>Hedgefonds</td>
<td>Exposures werden pro Simulation mit dem Preisveränderungsfaktor multipliziert (inklusive Devisenkursveränderung).</td>
<td>Die Bewertungsfunktion ergibt sich aus der Multiplikation des Exposures mit dem jeweiligen Preisveränderungsfaktor, respektive aus der expliziten Funktion für Index-Forwards.</td>
</tr>
<tr>
<td>Ebenfalls enthalten in den Bewertungsfunktionen der explizit abgebildeten Hedgefonds Forwards.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private Equity</td>
<td>Exposures werden pro Simulation mit dem Preisveränderungsfaktor multipliziert (inklusive Devisenkursveränderung).</td>
<td>Die Bewertungsfunktion ergibt sich aus der Multiplikation des Exposures mit dem jeweiligen Preisveränderungsfaktor, respektive aus der expliziten Funktion für Index-Forwards.</td>
</tr>
<tr>
<td>Ebenfalls enthalten in den Bewertungsfunktionen der explizit abgebildeten Private Equity Forwards.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Bedeutung</td>
<td>Funktionsweise</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>

Tabelle 2 Anwendung der Marktisikotreiber bei exakten Bewertungsfunktionen
5.3 Zu berücksichtigende Positionen nach Marktrisikotreiber und Mappingregeln bei exakten Bewertungsfunktionen

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Zu berücksichtigende Positionen und Mappingregeln</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinsen (Zero Rates)</td>
<td>Alle zinssensitiven Fixed-Income-Bilanzpositionen, wie etwa ▪ Obligationen ▪ Festhypotheken Hypotheken ▪ Festverzinsliche Kredite und Darlehen mit fester Laufzeit ▪ Verpflichtungen mit entsprechender Cashflow-Struktur</td>
</tr>
<tr>
<td>Kurzfristig</td>
<td>Die in Abschnitt 3.2 beschriebenen Forward-Exposures.</td>
</tr>
<tr>
<td>Langfristig</td>
<td>Fixed Income in anderen Währungen als CHF, EUR, USD und GBP: Zinsexposures in Währungen, für die keine gesonderten Risikofaktoren existieren, sind den Buckets der geographisch nächsten erfassten Währung zuzuordnen.</td>
</tr>
<tr>
<td>Credit Spreads</td>
<td>Das Spreadrisiko bezieht sich auf Finanzinstrumente, deren Barwerte auf Änderungen von Credit Spreads sensitiv sind.</td>
</tr>
<tr>
<td></td>
<td>Spreadrisiken sind grundsätzlich auch für alle mit einem Gegenparteirisiko behafteten Positionen relevant. Ausgenommen sind gewisse Emissionen souveräner Staaten (vgl. Punkt 1 unten) sowie unter gewissen Bedingungen Hypotheken (vgl. Sonderfälle Punkt II unten.)</td>
</tr>
<tr>
<td></td>
<td>Bei der Behandlung von Spreads unterscheidet das SST-Standardmodell für das Marktrisiko folgende Fälle</td>
</tr>
</tbody>
</table>
Bezeichnung | Zu berücksichtigende Positionen und Mappingregeln
--- | ---
| | Alle anderen Schweizer CHF-Corporate: Mapping auf CHF_CORP_Spread (Faktor CORP).
| | 4. Alle übrigen Gegenparteien mit Sub-Investment-Grade Qualität: Mapping auf (USD) BB-Spread.
| Sonderfälle:
| II. Direkte Hypotheken werden bei gleichzeitiger Verwendung des SST-Standardmodells für das Kreditrisiko als nicht zusätzlich spreadrisikobehaftet angesehen (kein Spreadrisiko im SST-Standardmodell für das Marktrisiko).
| FX | Die in Abschnitt 3.2 beschriebenen Forward-Exposures, sofern sie einem entsprechenden FX-Risiko unterliegen.
| Für alle Fixed Income Bilanzpositionen mit nominalen Cashflows (inklusive Certainty-Equivalent Cashflows aus Versicherungsverpflichtungen) und alle Bilanzpositionen, bei denen der Preisveränderungsfaktor (ohne Drift über risikofrei) explizit modelliert wird (wie Aktien- und Immobilien-Exposures) wird das Währungsrisiko via Diskont- und Preisveränderungsfaktor abgebildet.
| Für alle anderen Positionen, wie Derivate, die eine entsprechende Fremdwährungskomponente enthalten (also bspw. der EUR-Leg eines EUR/GBP FX-Swaps) sind die FX-Risiken via Delta-Ansatz zu berücksichtigen.
| Exposures zu Währungen, für die keine gesonderten Risikotreiber existieren, sind der geographisch nächstgelegenen Währung zuzuweisen. Es gelten:
| 1) Nord- und Südamerikas (Americas) Mapping auf US-Dollar;
| 2) Ostsasien und der pazifische Raum (Asia-Pacific) Mapping auf japanischen Yen;
<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Zu berücksichtigende Positionen und Mappingregeln</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktien</td>
<td>Alle Aktieninvestitionen (ohne Beteiligungen) und Aktienforwards werden auf die Risikotreiber Aktien abgebildet. Für andere Bilanzpositionen, welche indirekt gegenüber einzelnen Aktienkursen, beziehungsweise Aktienindizes, sensitiv sind, ist der Delta-Ansatz zu verwenden. Die Exposures sind dem zum jeweils geographisch nächsten Wirtschaftsraum gehörigen Risikofaktor wie folgt zuzuweisen:</td>
</tr>
<tr>
<td>Hedgefonds</td>
<td>Alle Anlagen, welche Engagements in Hedgefonds darstellen, insbesondere</td>
</tr>
<tr>
<td></td>
<td>▪ Hedgefonds (Direktanlage)</td>
</tr>
<tr>
<td></td>
<td>▪ Dachfonds im Bereich Hedgefonds</td>
</tr>
<tr>
<td></td>
<td>▪ Allfällige Forwards mit Hedgefonds Underlying</td>
</tr>
<tr>
<td>Private Equity</td>
<td>Alle Anlagen, welche Investitionen in Private Equity darstellen, insbesondere</td>
</tr>
<tr>
<td></td>
<td>▪ Private-Equity-Fonds</td>
</tr>
<tr>
<td></td>
<td>▪ Private-Equity-Gesellschaften</td>
</tr>
<tr>
<td></td>
<td>▪ Allfällige Forwards mit Private Equity Underlying</td>
</tr>
<tr>
<td>Direkte Wohnimmobilien Schweiz</td>
<td>Direktinvestitionen in:</td>
</tr>
<tr>
<td></td>
<td>▪ Wohnimmobilien Schweiz,</td>
</tr>
<tr>
<td></td>
<td>▪ gemischte Immobilien Schweiz mit weniger als 50 % Geschäftsanteil,</td>
</tr>
<tr>
<td></td>
<td>▪ obige Anlagen im Bau,</td>
</tr>
<tr>
<td></td>
<td>▪ allfällige Forwards mit Wohnimmobilien Schweiz als Underlying.</td>
</tr>
<tr>
<td>Immobilienfonds Schweiz</td>
<td>Börsengehandelte Immobilienfonds Schweiz und allfällige Forwards auf Immobilienfonds Schweiz. Direkte Geschäftimmobilien Schweiz:</td>
</tr>
<tr>
<td></td>
<td>▪ Geschäftimmobilien Schweiz (Direktinvestition oder selbst genutzte Objekte),</td>
</tr>
<tr>
<td></td>
<td>▪ gemischte Immobilien Schweiz mit mehr als 50 % Geschäftsanteil,</td>
</tr>
<tr>
<td></td>
<td>▪ obige Anlagen im Bau,</td>
</tr>
<tr>
<td></td>
<td>▪ allfällige Forwards mit Geschäftimmobilien Schweiz als Underlying.</td>
</tr>
<tr>
<td>Beteiligungen</td>
<td>Jede Direktanlage (ohne Immobilien, Private Equity, Partizipations- und Genussscheine), solange diese nicht zu materiell ist. Analog zur bisherigen Behandlung ist ein Sonderrisikotreiber vorgesehen (25 % Volatilität, komonoton zu den restlichen Risikofaktoren).</td>
</tr>
</tbody>
</table>

Tabelle 3 Zu berücksichtigende Positionen nach Marktrisikotreiber und Mappingregeln bei exakten Bewertungsfunktionen
Bedeutung der Marktfrisikotreiber und Ermittlung der Sensitivitäten im Delta-Ansatz

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Auslenkung h_i</th>
<th>Bedeutung</th>
<th>Ermittlung der Sensitivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinsen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Zero Rates)</td>
<td>CHF: ± 100 bps</td>
<td>Barwerteffekt einer Änderung der Zinskurve im Bereich 0 – 5.0 Jahre.</td>
<td>Neubewertung der zinssensitiven Positionen mit einer Zinskurve, welche im Bereich von 0 – 5.0 Jahren um h_i höher (tiefer) ist als die Ausgangskurve. Beispiel CHF-Zinskurve: Die CHF-Ausgangskurve wird im Bereich 0 – 5.0 Jahre um h_i bps parallel angehoben, respektive gesenkt.</td>
</tr>
<tr>
<td>(CHF; EUR; USD; GBP)</td>
<td>EUR: ± 140 bps</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>USD: ± 140 bps</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GBP: ± 140 bps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kurzfristig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinsen</td>
<td>CHF: ± 100 bps</td>
<td>Barwerteffekt einer Änderung der Zinskurve im Bereich 5.01 – 19.0 Jahre.</td>
<td>Analog zu „Zinsen (Zero Rates) Kurzfristig“</td>
</tr>
<tr>
<td>(Zero Rates)</td>
<td>EUR: ± 140 bps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CHF; EUR; USD; GBP)</td>
<td>USD: ± 140 bps</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GBP: ± 140 bps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittelfristig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinsen</td>
<td>CHF: ± 100 bps</td>
<td>Barwerteffekt einer Änderung der Zinskurve (Diskontkurve) im Bereich über 19.01 Jahre.</td>
<td>Analog zu „Zinsen (Zero Rates) Kurzfristig“</td>
</tr>
<tr>
<td>(Zero Rates)</td>
<td>EUR: ± 140 bps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CHF; EUR; USD; GBP)</td>
<td>USD: ± 140 bps</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GBP: ± 140 bps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langfristig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implizite Zinsvolatility</td>
<td>± 30 % (relativ)</td>
<td>Wertveränderung von Finanzerzeugnismitteln, die auf eine Zinsvolatility sensitiv sind, bei einer Zu- beziehungsweise Abnahme der impliziten Volatility um 30 %.</td>
<td>Änderung der Volatility um 30 %</td>
</tr>
<tr>
<td>(zu Bachelier-Modell)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit Spread</td>
<td>AAA: ± 100 bps</td>
<td>Wertveränderung einer Änderung der Credit Spreads (Differenz zwischen Zinsen)</td>
<td>Wertveränderung, welche durch eine Parallelverschiebung der Zinskurve um h_i entsteht.</td>
</tr>
<tr>
<td></td>
<td>AA: ± 100 bps</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A: ± 120 bps</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BBB: ± 150 bps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Auslenkung h_i</td>
<td>Bedeutung</td>
<td>Ermittlung der Sensitivität</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------------------</td>
<td>-----------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>BB:</td>
<td>± 200 bps</td>
<td>für kreditrisikobehafteten Anlagen und kreditrisikofreien Anlagen) um h_i.</td>
<td>Beinhaltet die Bewertung gewisser kreditrisikobehafteter Anlagen die Diskontierung mit einem instrumenten-spezifischen Yield, so ist die Wertänderung bei einer Erhöhung / Reduktion des Yields um h_i zu messen.</td>
</tr>
<tr>
<td>Swap-Spread:</td>
<td>± 100 bps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUGO_Spread:</td>
<td>± 100 bps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH_CANT_Spread_KT:</td>
<td>± 100 bps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH_CORP_Spread:</td>
<td>± 100 bps</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Falls bei der Spreadsenkung ein Corporate-Spread unter 0 resultieren würde, ist stattdessen die Sensitivität einer Spread-Senkung auf 0 zu verwenden.

Falls bei der Spreadsenkung ein Corporate-Spread unter 0 resultieren würde, ist stattdessen die Sensitivität einer Spread-Senkung auf 0 zu verwenden.

Für kreditrisikobehafteten Anlagen und kreditrisikofreien Anlagen) um h_i.

<table>
<thead>
<tr>
<th>FX EUR/CHF</th>
<th>± 15 %</th>
<th>Wertveränderungen bei einer Änderung des EUR/CHF-Wechselkurses um ± 15 %.</th>
<th>Neubewertung aller Positionen mit einem EUR/CHF Kurs, der um 15 % über / unter dem Ausgangskurs liegt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FX USD/CHF</td>
<td>± 20 %</td>
<td>Wertveränderungen bei einer Änderung des USD/CHF Wechselkurses um ± 20 %.</td>
<td>Analog zu „FX EUR/CHF“</td>
</tr>
<tr>
<td>FX GBP/CHF</td>
<td>± 20 %</td>
<td>Wertveränderungen bei einer Änderung des GBP/CHF Wechselkurses um ± 20 %.</td>
<td>Analog zu „FX EUR/CHF“</td>
</tr>
<tr>
<td>FX JPY/CHF</td>
<td>± 20 %</td>
<td>Wertveränderungen bei einer Änderung des JPY/CHF Wechselkurses um ± 20 %.</td>
<td>Analog zu „FX EUR/CHF“</td>
</tr>
<tr>
<td>Implizite FX-Volatilität</td>
<td>+ 100 % / - 0 %</td>
<td>Werteffekte von Finanzinstrumenten, die auf eine FX-Volatilität sensitiv sind, bei einer Änderung der impliziten Volatilität um + 100 % / - 0 %.</td>
<td>Neubewertung der Positionen bei + 100 % / - 0 % Änderung der Volatilität.</td>
</tr>
<tr>
<td>Aktien</td>
<td>± 20 %</td>
<td>Wertveränderungen bei einer Änderung der Aktien-/Indexkurse.</td>
<td>Neubewertung der Positionen bei 20 % Änderung der Aktien-/Indexkurse.</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Auslenkung h_i</td>
<td>Bedeutung</td>
<td>Ermittlung der Sensitivität</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Schweiz</td>
<td></td>
<td>ner Änderung von Aktienkursen um ±20 %</td>
<td>Neubewertung der Positionen bei +100 % / -0 % Änderung der Aktienvolatilität.</td>
</tr>
<tr>
<td>EMU</td>
<td>+ 100 % / - 0 % (relativ)</td>
<td>Barwerteffekt auf Finanzinstrumente, die auf die Volatilität von Aktien / Aktienindizes sensitiv sind, bei einer Änderung der impliziten Volatilität um + 100 % / - 0 %.</td>
<td>Neubewertung der Positionen bei 20 % Änderung der Hedgefonds-Bewertungen.</td>
</tr>
<tr>
<td>USA</td>
<td>± 20 %</td>
<td>Wertveränderung bei einer Änderung der Hedgefonds-Bewertungen um ± 20 %.</td>
<td>Neubewertung der Positionen bei 20 % Änderung der Hedgefonds-Bewertungen.</td>
</tr>
<tr>
<td>Direkte Wohnimmobilien Schweiz</td>
<td>± 10 %</td>
<td>Wertveränderung bei einer Änderung des Immobilienindexes um ± 10 %.</td>
<td>Neubewertung der Positionen bei 10 % Änderung der Immobilienpreise.</td>
</tr>
<tr>
<td>Immobilienfonds Schweiz</td>
<td>± 10 %</td>
<td>Wertveränderung bei einer Änderung des Immobilienfondskurses um ± 10 %.</td>
<td>Neubewertung der Positionen bei 10 % Änderung der Kurse der Immobilienfonds.</td>
</tr>
<tr>
<td>Direkte Geschäftssimmobilien Schweiz</td>
<td>± 10 %</td>
<td>Wertveränderung bei einer Änderung des Immobilienindexes um ± 10 %.</td>
<td>Neubewertung der Positionen bei 10 % Änderung der Immobilienpreise.</td>
</tr>
<tr>
<td>Beteiligungen</td>
<td>± 10 %</td>
<td>Wertveränderung bei einer Änderung der Beteiligungswerte um ± 10 %.</td>
<td>Neubewertung der Positionen bei 10 % Änderung der Kurse der Beteiligung.</td>
</tr>
</tbody>
</table>

Tabelle 4 Bedeutung der Marktrisikotreiber und Ermittlung der Sensitivitäten im Delta-Ansatz
5.5 Zu berücksichtigende Positionen und Mappingregeln im Delta-Ansatz

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Zu berücksichtigende Positionen und Mappingregeln</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinsen</td>
<td>Alle zinssensitiven Fixed Income Bilanzpositionen im weiteren Sinne, welche nicht rein durch nominelle Cashflows abgebildet werden können (vgl. Abschnitt 5.3), d.h. insbesondere:</td>
</tr>
<tr>
<td></td>
<td>- Wandelanleihen</td>
</tr>
<tr>
<td></td>
<td>- Floating Rate Notes</td>
</tr>
<tr>
<td></td>
<td>Ebenfalls via Delta-Ansatz sind die folgenden zinssensitiven Produkte und ähnliche Produkte abzubilden:</td>
</tr>
<tr>
<td></td>
<td>- Zinsgarantien</td>
</tr>
<tr>
<td></td>
<td>- Zinsswaps</td>
</tr>
<tr>
<td></td>
<td>- Caps/Floors</td>
</tr>
<tr>
<td></td>
<td>- FX-Swaps</td>
</tr>
<tr>
<td></td>
<td>Immobilien sind für diesen Risikofaktor nicht zu berücksichtigen sondern via den separaten Risikotreiber für Immobilien, siehe Abschnitt 5.3.</td>
</tr>
<tr>
<td></td>
<td>Oben genannte Bilanzpositionen in anderen Währungen als CHF, EUR, USD und GBP:</td>
</tr>
<tr>
<td></td>
<td>1) Nord- und Südamerika (Americas), Ferner Osten und Pazifischer Raum (Asia Pacific): Mapping auf USD-Zinsen,</td>
</tr>
<tr>
<td>Implizite Zinsvolatilität (zu Bachelier Modell)</td>
<td>Alle Positionen, die eine Sensitivität auf die implizite Zinsvolatilität haben, wie:</td>
</tr>
<tr>
<td></td>
<td>- Optionen auf zinssensitiven Positionen wie etwa</td>
</tr>
<tr>
<td></td>
<td>- Obligationen</td>
</tr>
<tr>
<td></td>
<td>- Hypotheken</td>
</tr>
<tr>
<td></td>
<td>- Zinsswaps</td>
</tr>
<tr>
<td></td>
<td>- Forwards</td>
</tr>
<tr>
<td></td>
<td>- Spezifische oder eingebettete Zinsoptionen wie etwa</td>
</tr>
<tr>
<td></td>
<td>- Caps / Floors (caplet / floorlet)</td>
</tr>
<tr>
<td></td>
<td>- Collars</td>
</tr>
<tr>
<td></td>
<td>- Swaptions</td>
</tr>
<tr>
<td>Credit Spread</td>
<td>Alle Spreadrisiken aus Forderungen aus Kreditderivatenv und kreditrisikobehaftete Forderungen aus impliziten Optionen (eingebettet in handelbaren liquiden Finanzinstrumenten).</td>
</tr>
<tr>
<td></td>
<td>Für Swap Government Spread gilt:</td>
</tr>
<tr>
<td></td>
<td>Alle Positionen in Swap Produkten (z.B. Swaps und Swaptions); diese Produkte werden kanonisch via Delta-Ansatz abgebildet. Alle Bilanzpositionen mit nominellen Cashflows im Sinne der Beschreibung bei den Zinsrisikofaktoren in Abschnitt 5.3 sind jedoch gemäss Abschnitt 5.3 abzubilden. Die weiteren Ausführungen zu den Spreads in Abschnitt 5.3 gelten hier analog.</td>
</tr>
<tr>
<td>FX</td>
<td>Alle Bilanzpositionen ausser:</td>
</tr>
<tr>
<td></td>
<td>- alle Fixed Income Bilanzpositionen (inklusive Cashflows aus Versicherungsverpflichtungen),</td>
</tr>
<tr>
<td></td>
<td>- alle Bilanzpositionen, bei denen der Preisveränderungsfaktor explizit modelliert wird</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Zu berücksichtigende Positionen und Mappingregeln</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>(wie Aktien- und Immobilienexposures),</td>
</tr>
<tr>
<td></td>
<td>• alle explizit abgebildeten Forwards, die ein Währungsrisiko aufweisen.</td>
</tr>
<tr>
<td></td>
<td>Beispiele sind bei Derivaten (ohne die explizit abgebildeten Forwards), die eine entsprechende Fremdwährungskomponente enthalten (also bspw. der EUR-Leg eines EUR/GBP FX-Swaps). Hier sind die FX-Risiken via Delta-Ansatz zu berücksichtigen.</td>
</tr>
<tr>
<td></td>
<td>Bei Exposures zu Währungen, für die keine gesonderten Risikotreiber existieren, gelten die Ausführungen in Abschnitt 5.3 analog.</td>
</tr>
<tr>
<td>Implizite</td>
<td>Alle Positionen, die eine Sensitivität auf die implizite FX-Volatilität haben.</td>
</tr>
<tr>
<td>FX-Volatilität</td>
<td>Bilanzpositionen, welche indirekt gegenüber einzelnen Aktienkursen, beziehungsweise Aktienindizes, sensitiv sind, mit Ausnahme der explizit abgebildeten Aktienforwards.</td>
</tr>
<tr>
<td>Aktien</td>
<td>Zu berücksichtigen sind neben entsprechenden Derivaten auch eingebettete Optionen (bspw. in Wandelanleihen).</td>
</tr>
<tr>
<td></td>
<td>Der Effekt auf Positionen in eigenen Aktientiteln ist nicht zu berücksichtigen, wohl aber der Effekt auf Derivate, die auf eigene Titel lauten (bspw. Lepos).</td>
</tr>
<tr>
<td></td>
<td>Die Ausführungen zur geografischen Zuweisung von Exposures aus Abschnitt 5.3 gelten hier analog.</td>
</tr>
<tr>
<td>Implizite</td>
<td>Alle Positionen, die eine Sensitivität auf die implizite Aktienvolatilität haben.</td>
</tr>
<tr>
<td>Aktienvolatilität</td>
<td>Bilanzpositionen, welche indirekt gegenüber einzelnen Aktienkursen, beziehungsweise Aktienindizes, sensitiv sind, mit Ausnahme der explizit abgebildeten Aktienforwards.</td>
</tr>
<tr>
<td>Hedgefonds</td>
<td>Nur allfällige Positionen, die indirekt von Hedgefonds abhängen und nicht einem explizit abgebildeten Forward entsprechen. D.h. Positionen, die auf Veränderungen des Hedgefonds-Indexes reagieren und nicht zu den in Abschnitt 5.3 beschriebenen, direkt abzubildenden Exposures zählen.</td>
</tr>
<tr>
<td>Private Equity</td>
<td>Nur allfällige Anlagen, welche lediglich indirekt von Private abhängen und nicht einem explizit abgebildeten Forward entsprechen. D.h. Positionen die auf Veränderungen des Private Equity Indexes reagieren und nicht zu den in Abschnitt 5.3 beschriebenen, direkt abzubildenden Exposures zählen.</td>
</tr>
<tr>
<td>Direkte Wohnimmobilien Schweiz</td>
<td>Nur allfällige Positionen, welche lediglich indirekt von direkten Wohnimmobilien Schweiz abhängen und nicht einem explizit abgebildeten Forward entsprechen.</td>
</tr>
<tr>
<td>Immobilienfonds Schweiz</td>
<td>Nur allfällige Positionen, welche lediglich indirekt von Immobilienfonds abhängen und nicht einem explizit abgebildeten Forward entsprechen.</td>
</tr>
<tr>
<td>Direkte Geschäftsimmobilien Schweiz</td>
<td>Nur allfällige Positionen, welche lediglich indirekt von direkten Geschäftsimmobilien Schweiz abhängen und nicht einem explizit abgebildeten Forward entsprechen.</td>
</tr>
<tr>
<td>Beteiligungen</td>
<td>Nur allfällige Positionen, welche lediglich indirekt von Beteiligungen abhängen.</td>
</tr>
</tbody>
</table>

Tabelle 5 Zu berücksichtigende Positionen und Mappingregeln im Delta-Ansatz
5.6 Schätzung der Volatilitäten und Korrelationsmatrix

5.6.1 Methodik

Im SST-Standardmodell für das Marktrisiko wird angenommen, dass die Änderungen der Risikofaktoren multivariat normalverteilt sind. Die Normalverteilung wird durch den Mittelwertvektor \(\mu \) und die Kovarianzmatrix \(\Sigma \) vollständig charakterisiert, wobei im SST-Standardmodell für das Marktrisiko der Mittelwertvektor \(\mu \) auf null (vgl. Abschnitt 4) gesetzt wird.

Datentransformation: Zinsen und Spreads

Im SST-Standardmodell für das Marktrisiko werden Zinsen und Spreads auf Basis einer stetigen Verzinsungskonvention verwendet, da sonst bei einer zugrundeliegenden multivariaten Normalverteilung der Expected Shortfall nicht definiert ist. Für die früher verwendete jährliche Verzinsungskonvention bedeutet dies implizit, dass diese Zinsen nicht mehr normalverteilt, sondern geshiftet lognormalverteilt sind.

Da Zinsen und Spreads in der in Abschnitt 5.7 beschriebenen Datengrundlagen relativ zu einer jährlichen Verzinsungskonvention publiziert werden, müssen diese für die Schätzung der Korrelationsmatrix und Volatilitäten zuerst transformiert werden.

Wir illustrieren dies an einem generischen Beispiel. Sei \(\hat{R} \) der vom Datenlieferant publizierte Zins in absoluten Zahlen und \(S(j) \) der Spread für eine Laufzeit \(T \). Für die äquivalente Umformulierung stellen wir sicher, dass die Ab- oder äquivalent die Aufzinsungsfaktoren unverändert bleiben. Bezeichnen wir mit \(R \) und \(S(r) \) die entsprechenden Grössen für eine stetige Verzinsungskonvention, ergibt sich

\[
(1 + \hat{R})^T = e^{R \cdot T}, \quad (1 + \hat{R} + S(j))^T = e^{(R+S(j)) \cdot T},
\]

und damit

\[
R = \ln(1 + \hat{R}), \quad S(j) = \ln(1 + \hat{R} + S(j)) - R.
\]

Weitere zu beachtenden Transformationen befinden sich im Abschnitt 5.7 nach Tabelle 7.

12 Der SWX IAZI Investment Real Estate Performance Index hingegen steht nur auf Quartalbasis zur Verfügung, wobei dieser lediglich für den Volatilitätskalierungsfaktor für Wohnimmobilien verwendet wird.
Schätzung der Volatilitäten und Korrelationsmatrix

Wir gehen nun davon aus, dass die Inkremente der Risikofaktoren \(\Delta RFR \) in einer Matrix der Dimension \((n \times d) \) organisiert sind, wobei \(n \) die Anzahl Beobachtungen und \(d \) die Anzahl berücksichtigten Risikofaktoren darstellen. Aufgrund des Abschnitts 5 besteht damit die Datenmatrix im SST-Standardmodell für das Marktrisiko aus 39 Spalten. Je nachdem, ob der Risikofaktor als normalverteilt (bspw. Zinsen und Spreads) oder als lognormalverteilt gilt (Bspw. Währungen, Aktien-, Immobilienindizes) enthalten die Spalten die Veränderung des Risikofaktors \(\Delta RFR = RF_t - RF_{t-1} \) oder die logarithmische Veränderung, \(\Delta RF = \ln\left(\frac{RF_t}{RF_{t-1}}\right) \).

Es wird der (erwartungstreue) Standardschätzer für \(\Sigma \) verwendet, der gegeben ist durch:

\[
S = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})^t, \quad \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.
\]

wobei \(X_i \) einen Vektor der oben beschriebenen Datenmatrix ist.

Zwischen der Kovarianzmatrix \(\Sigma \) und der Korrelationsmatrix \(P \) besteht folgender Zusammenhang:

\[
\Sigma = \Delta P \Delta,
\]

wobei \(\Delta \) die Diagonalmatrix bezeichnet mit den Standardabweichungen (Volatilitäten) der Risikofaktoränderungen als Diagonalelemente, also

\[
\Delta = \begin{bmatrix}
\sigma_1 & 0 & \ldots & 0 \\
0 & \ddots & & \\
0 & & \ddots & \\
0 & & & \sigma_d
\end{bmatrix}.
\]

Einen Schätzer \(R = (r_{jk})_{j,k} \) der Korrelationsmatrix \(P \) erhält man unmittelbar aus \(S = (s_{jk})_{j,k} \). Das Element in Zeile \(j \) und Spalte \(k \) ist gegeben durch den Pearson-Korrelationskoeffizient

\[
\hat{r}_{jk} = \frac{s_{jk}}{\sqrt{s_{jj}s_{kk}}}.
\]

wobei \(s_{jj} \) der Schätzer für die Varianz \(\sigma^2 = \sigma_{jj} \) bzw. \(\sqrt{s_{jj}} \) der Schätzer für die Standardabweichung \(\sigma \) darstellen.

Da der Zeithorizont im SST ein Jahr beträgt, müssen annualisierte Standardabweichungen (Volatilitäten) verwendet werden. Bei Monatsdaten erhält man diese indem man die Volatilitäten der Monatsdaten mit der Quadratwurzel der Anzahl Monate pro Jahr multipliziert

\[
\sigma_{\text{Jahr}} = \sqrt{12} \sigma_{\text{Monat}}
\]
Bei Quartalsdaten, wird die annualisierte Volatilität aus der Quartalsvolatilität multipliziert mit der Quadratwurzel der Anzahl Quartale pro Jahr erhalten:

$$\sigma_{\text{Jahr}} = \sqrt{4} \sigma_{\text{Quartal}}$$

Der Korrelationskoeffizient ist unabhängig von der Frequenz der beobachteten Daten und muss somit nicht annualisiert werden.

Positiv-Definitheit der Korrelationsmatrix

Die mittels oben definiertem Schätzer ermittelte Korrelationsmatrix R ist möglicherweise nicht positiv definit, da das SST-Standardmodell für das Marktrisiko einige Risikofaktoren enthält, die relativ hoch korreliert sind.

Eine pragmatische Methode\(^\text{13}\), um eine positiv definite Matrix aus der ursprünglichen Schätzung zu erhalten, ist die folgende: Die geschätzte Korrelationsmatrix R habe die Eigenwerte $\lambda_1, \ldots, \lambda_n$ und die (orthogonalen) Eigenvektoren v_1, v_2, \ldots, v_n; Λ bezeichne dabei die $n \times n$ Matrix, welche auf der Hauptdiagonalen die Eigenwerte $\lambda_1, \ldots, \lambda_n$ als Einträge hat und sonst 0; V bezeichne die $n \times n$-Matrix, deren i-te Spalte durch den i-ten Eigenvektor v_i definiert ist. Es gilt dann

$$R = V \Lambda V^t.$$

Falls die geschätzte Korrelationsmatrix R nicht positiv definit ist, sind $m \geq 1$ Eigenwerte nicht positiv. Wir bezeichnen diese Eigenwerte als $\lambda_{i_1}, \lambda_{i_2}, \ldots, \lambda_{i_m}$ wobei $I = \{i_1, i_2, \ldots, i_m\}$ die Indexmenge mit Indizes zwischen 1 und n der negativen Eigenwerte bezeichnet.

Wir definieren nun eine neue Matrix $\bar{\Lambda}$, indem wir – ausgehend von Λ – deren negative Eigenwerte mit jeweils dem Minimum von 10^{-5} und dem mit (-1) multiplizierten Eigenwert ersetzen

$$\lambda_{\bar{i}} = \begin{cases}
\lambda_i, & i \notin I \\
\min(-\lambda_i, 10^{-5}) & i \in I
\end{cases}.$$

Daraus lässt sich eine neue, positiv definite Matrix bestimmen mittels

$$\bar{R} = V \bar{\Lambda} V^t.$$

Die so entstandene Matrix \bar{R} wird in der Regel nicht nur Einsen auf der Diagonalen haben. Um eine Korrelationsmatrix zu erhalten, müssen die Elemente der Matrix \bar{R} folgendermassen transformiert werden

$$r_{jk} \rightarrow \frac{r_{jk}}{\sqrt{r_{jj}r_{kk}}}.$$

5.6.2 Wechsel der SST-Währung

Für die im SST-Standardmodell für das Marktrisiko- berücksichtigten Währungen (EUR, USD, GBP und JPY) besteht die Möglichkeit, die SST-Berechnungen in einer dieser Währung vorzunehmen, ohne dass Anpassungen in den von der FINMA zur Verfügung gestellten Volatilitäten und Korrelationsmatrix notwendig sind. Wir beschreiben nachfolgend die Annahmen und Transformationen, welche den Berechnungen zugrunde liegen.

Allgemeines

Wir bezeichnen den Wechselkurs der Währung A zur Währung B zum Zeitpunkt \(T \geq 0 \) mit \(R_{XT}^{A/B} \).

Für die Wechselkurse \(R_{XT}^{A/C} \), \(R_{XT}^{A/C} \), und \(R_{XT}^{B/C} \) gilt basierend auf einem hier unterstellten no-Arbitrage Argument folgende Gleichheit

\[
R_{XT}^{A/B} = \frac{R_{XT}^{A/C}}{R_{XT}^{B/C}}
\]

D.h. die Währung \(R_{XT}^{A/B} \) lässt sich aufgrund der Währungen \(R_{XT}^{A/C} \) und \(R_{XT}^{B/C} \) (Kreuzkurs) ermitteln.

Aus der Definition der einjährigen logarithmierten Rendite (d.h. die logarithmierten Inkrementen)

\[
\frac{\Delta F_{FTI}}{R} := \ln \left(\frac{R_{X1}}{A/B} \right) - \ln \left(\frac{R_{X0}}{A/B} \right)
\]

ergibt sich dann durch Einsetzen von \(R_{XT}^{A/B} = \frac{R_{XT}^{A/C}}{R_{XT}^{B/C}} \)

\[
\Delta F_{X}^{A/B} = \ln \left(\frac{R_{XT}^{A/C}}{R_{XT}^{B/C}} \right) = \ln \left(\frac{R_{X1}^{A/C}}{R_{X1}^{B/C}} \right) - \ln \left(\frac{R_{X0}^{A/C}}{R_{X0}^{B/C}} \right)
\]

und damit

\[
\Delta F_{X}^{A/B} = \Delta F_{X}^{A/C} - \Delta F_{X}^{B/C}
\]

Da der Wechselkurs \(F_{X}^{A/B} \) das Austauschverhältnis der Währung A zur Währung B darstellt, gilt ebenfalls

\[
F_{X}^{A/B} = \frac{1}{F_{X}^{B/A}}
\]

und für die einjährige logarithmierte Rendite

\[
\Delta F_{X}^{A/B} = \ln \left(\frac{1}{F_{X1}^{B/A}} \right) - \ln \left(\frac{1}{F_{X0}^{B/A}} \right) = -\Delta F_{X}^{B/A}.
\]
Bestimmung der transformierten Kovarianzmatrix

Für die im SST-Standardmodell für das Marktrisiko berücksichtigten Währungen lassen sich die oben beschriebenen Transformationen folgendermassen in Matrixform darstellen

\[
\begin{pmatrix}
\Delta \text{EUR/USD} \\
\Delta \text{CHF/USD} \\
\Delta \text{GBP/USD} \\
\Delta \text{JPY/USD}
\end{pmatrix} =
\begin{pmatrix}
\Delta \text{EUR/CHF} - \Delta \text{USD/CHF} \\
-\Delta \text{USD/CHF} \\
\Delta \text{GBP/CHF} - \Delta \text{USD/CHF} \\
\Delta \text{JPY/CHF} - \Delta \text{USD/CHF}
\end{pmatrix} =
\begin{pmatrix}
1 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1
\end{pmatrix} \cdot
\begin{pmatrix}
\Delta \text{EUR/CHF} \\
\Delta \text{USD/CHF} \\
\Delta \text{GBP/CHF} \\
\Delta \text{JPY/CHF}
\end{pmatrix}
\]

Wir transformieren nun alle 39 Risikofaktoren, die für die Bestimmung der Volatilitäten und der Korrelationsmatrix verwendet werden und leiten die Verteilung der transformierten Risikofaktoren ab.

Es sei \(R \in \mathbb{R}^{39} \) der Vektor der Inkremente der 39 Risikofaktoren (\(\Delta R \)).

Wir bezeichnen mit \(W \) eine (39 x 39) Matrix, die gleich der Identitätsmatrix ist ausser im Bereich der Wechselkurse. Für diesen Bereich entspricht die Matrix \(W \) der Matrix \(T \).

Mathematisch:

\[
W((26, \ldots, 29) \times (26, \ldots, 29)) \equiv T, \text{ und }
W(x,y) = 1(x,y), \quad (x,y) \in (1, \ldots 39) \times (1, \ldots 39) \setminus (26, \ldots, 29) \times (26, \ldots, 29)
\]

Der transformierte Vektor der Inkremente der Risikofaktoren \(\bar{R} \) erhält man durch

\[
\bar{R} \equiv W \cdot R
\]

Im SST-Standardmodell für das Marktrisiko wird angenommen, dass \(R \sim \mathcal{N}(0, \Sigma) \), mit Kovarianzmatrix \(\Sigma \).

Damit gilt \(\bar{R} \sim \mathcal{N}(0, W \cdot \Sigma \cdot W^T) \)

Für die anderen SST-Währungen, die im SST-Standardmodell für das Marktrisiko berücksichtigt sind, d.h. EUR, GBP und JPY, kann analog vorgegangen werden.
5.7 Beschreibung der Datengrundlage

<table>
<thead>
<tr>
<th>Modellierte Risikotreiber</th>
<th>Beschreibung</th>
<th>Datenquelle / Bloomberg-Code</th>
<th>Frequenz</th>
<th>Startdatum</th>
</tr>
</thead>
</table>
| CHF Zinsen (Zero Rates) | 2J Proxy kurzfristige Zinsen
10J Proxy mittelfristige Zinsen
30J Proxy langfristige Zinsen | SNB Daten¹⁴ | Täglich | 1995 |
| EUR Zinsen (Zero Rates) | 2J Proxy kurzfristige Zinsen
10J Proxy mittelfristige Zinsen
30J Proxy langfristige Zinsen | G0013Z 2Y BLC2
Curncy
G0013Z 10Y BLC2
Curncy
G0013Z 30Y BLC2
Curncy | Täglich | 1995 |
| USD Zinsen (Zero Rates) | 2J Proxy kurzfristige Zinsen
10J Proxy mittelfristige Zinsen
30J Proxy langfristige Zinsen | G0025Z 2Y BLC2
Curncy
G0025Z 10Y BLC2
Curncy
G0025Z 30Y BLC2
Curncy | Täglich | 1995 |
| GBP Zinsen (Zero Rates) | 2J Proxy kurzfristige Zinsen
10J Proxy mittelfristige Zinsen
30J Proxy langfristige Zinsen | G0022Z 2Y BLC2
Curncy
G0022Z 10Y BLC2
Curncy
G0022Z 30Y BLC2
Curncy | Täglich | 1995 |
| Implizite Zinsvolatilität | 10-10-CHF | USSN1010 Curncy | Täglich | Ab Mai 2005 |
| Credit Spread USA AAA, AA, A, BBB | Moody’s-Index minus dreissigjährige US-Staatsanleihe (Treasury) | MOODCAAA Index - GT30 GOVT,
MOODCAA Index - GT30 GOVT,
MOODCA Index - GT30 GOVT,
MOODCBAA Index - GT30 GOVT | Täglich | AAA und BBB ab 1983,
Rest ab 24.12.1992 |
| Credit Spread USA BB: | Differenz der zehnjährigen Laufzeit Bloomberg Fair Market Curve BB zum zehnjährigen FINMA Proxy für den USD risikolosen Zins. | C88410Y Index - G0025Z 10Y BLC2
Curncy | Täglich | Ab November 2002 |
| Credit Spread | Differenz der zehnjährigen AA:C66710Y Index - | Täglich | Ab März 2002 |

¹⁴ Die Datenhistorie ist auf der FINMA-Webseite publiziert (Excel-Datei SST Inputdaten.xlsx)
<table>
<thead>
<tr>
<th>Modellierte Risikotreiber</th>
<th>Beschreibung</th>
<th>Datenquelle / Bloomberg-Code</th>
<th>Frequenz</th>
<th>Startdatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH_CANT_Spread</td>
<td>Differenz achtjähriger Zinsen von Kantonen über denen der Eidgenossenschaft.</td>
<td>SNB-Datenportal: data.snb.ch > Tabelleangebot > Zinssätze, Renditen und Devisenmarkt > Renditen von Obligationen</td>
<td>Täglich</td>
<td>2001 (täglich seit Juni)</td>
</tr>
<tr>
<td>CH_CORP_Spread</td>
<td>Differenz achtjähriger Zinsen Schweizer Industrieunternehmen incl. Kraftwerke und Handel über denen der Eidgenossenschaft.</td>
<td>SNB-Datenportal: data.snb.ch > Tabelleangebot > Zinssätze, Renditen und Devisenmarkt > Renditen von Obligationen</td>
<td>Täglich</td>
<td>2001 (täglich seit Juni)</td>
</tr>
<tr>
<td>Swap Government Spread</td>
<td>Differenz der zehnjährigen Laufzeit von CHF-Swap zu CHF-Govt</td>
<td>105710 Y Index – SNB 10 Jahre</td>
<td>Täglich</td>
<td>Ab Anfang 1995</td>
</tr>
<tr>
<td>Wechselkurse</td>
<td>EUR/CHF Curncy USD/CHF Curncy GBP/CHF Curncy JPY/CHF Curncy</td>
<td>SFEC Curncy SFUS Curncy SFBP Curncy SFJY Curncy</td>
<td>Täglich</td>
<td>1980</td>
</tr>
<tr>
<td>Implizite FX-Volatilität</td>
<td>USD/CHF 3 Monate ATM Optionen</td>
<td>USDCHFV3M Curncy</td>
<td>Täglich</td>
<td>April 1995</td>
</tr>
<tr>
<td>Aktien:</td>
<td>MSCI Total Return Indizes:</td>
<td>GDDLSZ Index GDDLEMU Index GDDLUS Index GDDLUK Index GDDLJN Index</td>
<td>Monatlich</td>
<td>1970</td>
</tr>
</tbody>
</table>
Tabelle 6 Beschreibung der Datengrundlage

<table>
<thead>
<tr>
<th>Modellierte Risikotreiber</th>
<th>Beschreibung</th>
<th>Datenquelle / Bloomberg-Code</th>
<th>Frequenz</th>
<th>Startdatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implizierte Aktienvolatilität</td>
<td>VIX</td>
<td>VIX Index</td>
<td>Täglich</td>
<td>1994</td>
</tr>
<tr>
<td>Hedgefonds</td>
<td>HFRI Fund of Funds Composite Index</td>
<td>HFRIFOF Index</td>
<td>Monatlich</td>
<td>Ab Anfang 1990</td>
</tr>
<tr>
<td>Private Equity</td>
<td>LPX Direct Index</td>
<td>LPXIDITR Index</td>
<td>Täglich</td>
<td>Ab Anfang 1999</td>
</tr>
<tr>
<td>Immobilien Schweiz</td>
<td>Rüd Blass Immobilienindex</td>
<td>DBCHREE Index</td>
<td>Monatlich</td>
<td>1990, ab 31.07.2002 täglich</td>
</tr>
</tbody>
</table>

Tabelle 7 Zur Skalierung verwendete Zeitreihen

<table>
<thead>
<tr>
<th>Zur Skalierung verwendete Zeitreihen</th>
<th>Datenquelle / Bloomberg Code</th>
<th>Frequenz</th>
<th>Startdatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Für Wohnimmobilien wird die Volatilität des Rüd Blass Immobilienindex auf diejenige des IAZI-Index runterskaliert.</td>
<td>SWX IAZI Investment Real Estate Performance Index</td>
<td>IREALC Index</td>
<td>Quartalsweise (es werden Daten ab dem 2. Quartal 2005 verwendet)</td>
</tr>
</tbody>
</table>

Hinweise:

Bei den folgenden Risikotreibern können die von der FINMA vorgegebenen Proxies im Sinne einer Anpassungsmöglichkeit gemäss Rz 106 des FINMA-Rundschreibens 17/3 "SST" durch eigene ersetzt werden:

- implizite Zinsvolatilität,
- Hedgefonds,
- Private Equity

Es gelten folgende Anforderungen:

- Die gewählte Zeitreihe ist als Proxy für den Risikotreiber geeignet.
- Für die Schätzung der Volatilitäten und der Korrelationsmatrix sind die in diesem Dokument, Kapitel 5.6 beschriebenen Verfahren zu verwenden.

Das Versicherungsunternehmen hat die Angemessenheit der verwendeten Proxies und deren Verwendung im SST-Bericht zu erläutern.

6 Hinweise zum SST-Template.xlsx

6.1 Angaben im SST-Template.xlsx

Die folgende Tabelle gibt eine Übersicht über die in den einzelnen Tabellenblättern einzutragenden Informationen.

<table>
<thead>
<tr>
<th>Blatt</th>
<th>Einzutragende Angaben</th>
</tr>
</thead>
</table>
Asset Prices
Marktnah bewertete Exposures für Aktien, Immobilien, Immobilienfonds, Hedgefonds, Private Equity in Mio. Originalwährung, sowie Marktnah bewertete Exposure für (immaterielle) Beteiligungen in Mio. SST-Währung

FX Forwards
Daten für Währungsforwards (Devisentermingeschäfte)

Asset Prices Forwards
Daten für Preisforwards (Termingeschäfte für Preisabhängige Assets)

Insurance Liabilities
Cashflows aus Versicherungsverpflichtungen exkl. TVOG bzw. UVG Renten und Langfristleistungen in Mio. Originalwährung

Delta Remainder Market Risks
Für alle Instrumente, welche nicht mittels exakte Bewertungsfunktionen ausgewertet werden, sind die Delta Sensitivitäten gemäss Kapitel 5.5 auszuwerten und in Mio. SST-Währung einzutragen

| Tabelle 8 Informationen für die Marktrisiko-Blätter im SST-Template.xlsx |

6.2 Anpassungen des SST-Template.xlsx bei zusätzlich zu berücksichtigenden Risikofaktoren

Die FINMA kann bei Bedarf zusätzliche Risikofaktoren als unternehmensindividuelle Anpassung genehmigen. Auch in diesen Fällen lassen sich das SST-Tool bzw. das sstModel verwenden, das SST-Template.xlsx ist jedoch wie folgt anzupassen:

2) Im Blatt Market Risk (Dynamic): In der Tabelle Volatilities sind die Volatilitäten der zusätzlichen Risikofaktoren anzugeben. In der Tabelle Correlation matrix ist die neue Korrelationsmatrix mit den zusätzlichen Risikofaktoren zu ergänzen. Die Reihenfolge der Risikofaktoren in den beiden Tabellen muss die gleiche sein.

4) Im Blatt *Macroeconomic Scenarios* ist die Auslenkung der zusätzlich berücksichtigten Risikofaktoren für alle Szenarien anzugeben.

5) Falls die Korrelationsmatrix bzw. die Volatilitäten um die Risikofaktoren ergänzt wurden, ist im Blatt *config_tables* für *keyword marketriskcorrelations* die Spalte *ending column (integer)* dementsprechend anzupassen.

1) Blatt *Asset Prices*: Zusätzliche Zeile mit 1) Short cut: gold; 2) Art: Gold (optional); 3) Währung: USD; 4) Exposure in Mio: Wert des Exposures

2) Blatt *Expected Financial Result*: Zusätzliche Zeile mit 1) Assetklasse: Goldinvestment (optional); 2) Erwartete Rendite: die erwartete Rendite über risikofrei in %.

3) Blatt *Market Risk (Dynamic)*:
 - *Table Volatilities*: Zusätzliche Zeile mit 1) Short cut: gold; 2) Risk factor: Gold (optional); 3) Volatility: Volatilität in %
 - *Table Correlation matrix*: Neue Korrelationsmatrix inkl. der Risikofaktor Gold mit Angabe der Short cut: gold

4) Blatt *Market Risk (Static)*: Zusätzliche Zeile mit 1) Risk factor Id: RF 73; 2) Type: asset price; 3) Currency: USD; 4) Label: gold (Begründung: Übernahme des Short cuts, da im Blatt *Asset Prices* definiert und damit vom Type asset price); 5) Target currency: nicht relevant; 6) Time to maturity: nicht relevant; 7) Rating: nicht relevant; 8) Description: nicht relevant; 9) Original RF: gold (entsprechend dem Short cut), 10) Scale factor: 1 (Begründung: der Risikofaktor wird nicht skaliert); 11) Original RF indicator: Yes (Begründung: der Risikofaktor ist in der Korrelationsmatrix enthalten); 12) Groupes (standalones): other (Begründung: Das Marktrisiko des Risikofaktors Gold ist in der Kategorie Marktrisiko (andere) des FDS auszuweisen).

5) Blatt *Macroeconomic Scenarios*: Zusätzliche Zeile mit Short cut und Auslenkung für die jeweiligen Szenarien in %.

6) Blatt *config_tables* für *keyword marketriskcorrelations*: in der Spalte *ending column (integer)* ist die Zahl um eins (bspw. von 45 auf 46) zu erhöhen.

Optionale Angaben sind Angaben, welche nicht vom *SST-Tool* bzw. das *sstModel* gelesen werden.